4 resultados para linked open data
Resumo:
Contém resumo
Resumo:
This study identifies a measure of the cultural importance of an area within a city. It does so by making use of origindestination trip data and the bike stations of the bike share system in New York City as a proxy to study the city. Rarely is movement in the city studied at such a small scale. The change in strength of the similarity of movement between each station is studied. It is the first study to provide this measure of importance for every point in the system. This measure is then related to the characteristics which make for vibrant city communities, namely highly mixed land use types. It reveals that the spatial pattern of important areas remains constant over differing time periods. Communities are then characterised by the land uses surrounding these stations with high measures of importance. Finally it identifies the areas of global cultural importance alongside the areas of local importance to the city.
Resumo:
A importância dos sistemas de data warehousing e business intelligence é cada vez mais pronunciada, no sentido de dotar as organizações com a capacidade de guardar, explorar e produzir informação de valor acrescido para os seus processos de tomada de decisão. Esta realidade é claramente aplicável aos sectores da administração pública portuguesa e, muito em particular, aos organismos com responsabilidades centrais no Ministério da Saúde. No caso dos Serviços Partilhados do Ministério da Saúde (SPMS), que tem como missão prover o SNS de sistemas centrais de business intelligence, o apelo dos seus clientes, para que possam contar com capacidades analíticas nos seus sistemas centrais, tem sido sentido de forma muito acentuada. Todavia, é notório que, tanto os custos, como a complexidade, de grande parte destes projetos têm representado uma séria ameaça à sua adoção e sucesso. Por um lado, a administração pública tem recebido um forte encorajamento para integrar e adotar soluções de natureza open source (modelo de licenciamento gratuito), para os seus projetos de sistemas de informação. Por outro lado, temos vindo a assistir a uma vaga de aceitação generalizada de novas metodologias de desenvolvimento de projetos informáticos, nomeadamente no que diz respeito às metodologias Agéis, que se assumem como mais flexíveis, menos formais e com maior grau de sucesso. No sentido de averiguar da aplicabilidade do open source e das metodologias Ágeis aos sistemas de business intelligence, este trabalho documenta a implementação de um projeto organizacional para a SPMS, com recurso a ferramentas open source de licenciamento gratuito e através de uma metodologia de desenvolvimento de natureza Ágil.
Resumo:
Stratigraphic Columns (SC) are the most useful and common ways to represent the eld descriptions (e.g., grain size, thickness of rock packages, and fossil and lithological components) of rock sequences and well logs. In these representations the width of SC vary according to the grain size (i.e., the wider the strata, the coarser the rocks (Miall 1990; Tucker 2011)), and the thickness of each layer is represented at the vertical axis of the diagram. Typically these representations are drawn 'manually' using vector graphic editors (e.g., Adobe Illustrator®, CorelDRAW®, Inskape). Nowadays there are various software which automatically plot SCs, but there are not versatile open-source tools and it is very di cult to both store and analyse stratigraphic information. This document presents Stratigraphic Data Analysis in R (SDAR), an analytical package1 designed for both plotting and facilitate the analysis of Stratigraphic Data in R (R Core Team 2014). SDAR, uses simple stratigraphic data and takes advantage of the exible plotting tools available in R to produce detailed SCs. The main bene ts of SDAR are: (i) used to generate accurate and complete SC plot including multiple features (e.g., sedimentary structures, samples, fossil content, color, structural data, contacts between beds), (ii) developed in a free software environment for statistical computing and graphics, (iii) run on a wide variety of platforms (i.e., UNIX, Windows, and MacOS), (iv) both plotting and analysing functions can be executed directly on R's command-line interface (CLI), consequently this feature enables users to integrate SDAR's functions with several others add-on packages available for R from The Comprehensive R Archive Network (CRAN).