9 resultados para lignin condensation
Resumo:
Rev. Soc. Geol. España, 12(1), ano 1999
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Biotecnologia
Resumo:
Construction and Building Materials 49 (2013), 315-327
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioorgânica
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quantitative and qualitative analyses of the produced liquors were made by capillary electrophoresis and high-performance liquid chromatography. Pre-treatment conditions were set to produce xylose or furfural. Specific range of temperatures from 70 to 175 °C and residence times from 20.0 to 163.3 min were studied by fixing parameters such as biomass/IL ratio (10 % (w/w)) and water content (1.25 % (w/w)) in the pre-treatment process. Statistical modelling was applied to maximise the xylose and furfural concentrations. For the purpose of reaction condition comparison the severity factor for studied ionic liquid was proposed and applied in this work. Optimum conditions for xylose production were identified to be at 125 °C and 82.1 min, at which 16.7 % (w/w) xylose yield was attained. Furfural was preferably formed at higher pre-treatment temperatures and longer reaction time (161 °C and 104.5 min) reaching 30.7 % (w/w) maximum yield. The influence of water content on the optimum xylose formation was also studied. Pre-treatments with 5 and 10 % (w/w) water content were performed and an increase of 100 % and 140 % of xylose yield was observed, respectively, while the conversion into furfural maintained unchanged.
Resumo:
Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.
Resumo:
The world energy consumption is expected to increase strongly in coming years, because of the emerging economies. Biomass is the only renewable carbon resource that is abundant enough to be used as a source of energy Grape pomace is one of the most abundant agro-industrial residues in the world, being a good biomass resource. The aim of this work is the valorization of grape pomace from white grapes (WWGP) and from red grapes (RWGP), through the extraction of phenolic compounds with antioxidant activity, as well as through the extraction/hydrolysis of carbohydrates, using subcritical water, or hot compressed water (HCW). The main focus of this work is the optimization of the process for WWGP, while for RWGP only one set of parameters were tested. The temperatures used were 170, 190 and 210 °C for WWGP, and 180 °C for RWGP. The water flow rates were 5 and 10 mL/min, and the pressure was always kept at 100 bar. Before performing HCW assays, both residues were characterized, revealing that WWGP is very rich in free sugars (around 40%) essentially glucose and fructose, while RWGP has higher contents of structural sugars, lignin, lipids and protein. For WWGP the best results were achieved at 210 °C and 10 mL/min: higher yield in water soluble compounds (69 wt.%), phenolics extraction (26.2 mg/g) and carbohydrates recovery (49.3 wt.% relative to the existing 57.8%). For RWGP the conditions were not optimized (180 °C and 5 mL/min), and the values of the yield in water soluble compounds (25 wt.%), phenolics extraction (19.5 mg/g) and carbohydrates recovery (11.4 wt.% relative to the existing 33.5%) were much lower. The antioxidant activity of the HCW extracts from each assay was determined, the best result being obtained for WWGP, namely for extracts obtained at 210 °C (EC50=20.8 μg/mL; EC50 = half maximum effective concentration; EC50 = 22.1 μg/mL for RWGP, at 180 ºC).
Resumo:
Widely used in cancer treatment, chemotherapy still faces hindering challenges, ranging from severe induced toxicity to drug resistance acquisition. As means to overcome these setbacks, newly synthetized compounds have recently come into play with the basis of improved pharmacokinetic/pharmacodynamic properties. With this mind-set, this project aimed towards the antiproliferative potential characterization of a group of metallic compounds. Additionally the incorporation of the compounds within a nanoformulation and within new combination strategies with commercial chemotherapeutic drugs was also envisaged. Cell viability assays presented copper (II) compound (K4) as the most promising, presenting an IC50 of 6.10 μM and 19.09 μM for HCT116 and A549 cell line respectively. Exposure in fibroblasts revealed a 9.18 μM IC50. Hoechst staining assays further revealed the compound’s predisposition to induce chromatin condensation and nuclear fragmentation in HCT116 upon exposure to K4 which was later demonstrated by flow cytometry and annexin V-FITC/propidium iodide double staining analysis (under 50 % cell death induction). The compound further revealed the ability to interact with major macromolecules such as DNA (Kb = 2.17x105 M-1), inducing structural brakes and retardation, and further affecting cell cycle progression revealing delay in S-phase. Moreover BSA interactions were also visible however not conclusive. Proteome profiling revealed overexpression of proteins involved in metabolic activity and underexpression of proteins involved in apoptosis thus corroborating Hoechst and apoptosis flow cytometry data. K4 nanoformulation suffered from several hindrances and was ill succeeded in part due to K4’s poor solubility in aqueous buffers. Other approaches were considered in this regard. Combined chemotherapy assays revealed high cytotoxicity for afatinib and lapatinib strategies. Lapatinib and K4 proteome profiling further revealed high apoptosis rates, high metabolic activity and activation of redundant proteins as part of compensatory mechanisms.