10 resultados para high strain rates


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physiological responses of the clam R. decussatus from the Ria Formosa, southern Portugal, were examined in relation to normoxia, hypoxia (11, 6, 3 and 1.2 kPa) and anoxia; acute elevation of temperature (at 20, 27 and 32 °C), and its effect on the resistance to air exposure (at 20, 28 and 35 °C); current velocity (0.6, 3, 8 17, 24 and 36 cm. s-1) and turbidity (10, 100 and 300 mg. l-1 dry weight of particulate matter), and the efficiency of this species in retaining particles of different size (at 10 and 100 mg. l-1); and to copper contamination considering both short-term acute exposure to high levels (0.1-10 mg Cu. l-1) and chronic environmental levels (0.01 mg Cu. l-1). Clearance rates, respiration rates, absorption efficiency and excretion rates were assessed through the physiological energetics in terms of the energy budget and scope for growth (SFG). Stress independent respiration rates (R) and clearance rates (CR) were observed in relation to hypoxia down to 12 kPa and 6 kPa, respectively. Anoxic rates were 3.6 % of normoxic rates. Scope for growth was greatly reduced under extreme hypoxia (14 % of SFG in normoxia). Respiration rate was temperature independent in the range 20-32 °C but the decline in clearance rate resulted in negative SFG at 32 °C. Gaping during air exposure and the maintenance of faster aerobic metabolism led to 100 % mortality in 20 hours at 35 °C, 4 days at 28 °C and 5 days at 20 °C. Low current velocities (≤ 8 cm. s-1) supported high clearance rates. Shear stresses ≥ 0.9 Pa induced sediment movement and disturbed the feeding processes resulting in decreased clearance rates (at 36 cm. s-1, is 10 % of maximum CR). The observed ability of jetting out depleted water at a different level than the one of the inhalant current results is an important adaptation of clams to the slow currents of sheltered environments. Ingestion at high seston concentrations (> 100 mg. l-1) is controled by reducing the amount filtered, lowering CR (to 30 % of CR at low seston loads) and producing pseudofeces. Observed efficient retention of particles (70-100 %) in the range 3 to 8 μm is beneficial when algal cells are diluted by fine silt particles as it is likely to occur in the clams natural environment. R. decussatus in the short term escaped the exposure to copper by valve closure and therefore acute tests are not applicable to adult clams of this species. At environmental levels chronic exposure to copper did not induce lethal effects during the exposure period (20 days), but scope for growth was reduced to c. 30 %, indicating sustained impairment of physiological functions. The sensitivity of the physiological energetics and the integrated scope for growth measurement in assessing stress effects caused by natural environmental factors was highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sabbatical Studies Report

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Economics is a social science which, therefore, focuses on people and on the decisions they make, be it in an individual context, or in group situations. It studies human choices, in face of needs to be fulfilled, and a limited amount of resources to fulfill them. For a long time, there was a convergence between the normative and positive views of human behavior, in that the ideal and predicted decisions of agents in economic models were entangled in one single concept. That is, it was assumed that the best that could be done in each situation was exactly the choice that would prevail. Or, at least, that the facts that economics needed to explain could be understood in the light of models in which individual agents act as if they are able to make ideal decisions. However, in the last decades, the complexity of the environment in which economic decisions are made and the limits on the ability of agents to deal with it have been recognized, and incorporated into models of decision making in what came to be known as the bounded rationality paradigm. This was triggered by the incapacity of the unboundedly rationality paradigm to explain observed phenomena and behavior. This thesis contributes to the literature in three different ways. Chapter 1 is a survey on bounded rationality, which gathers and organizes the contributions to the field since Simon (1955) first recognized the necessity to account for the limits on human rationality. The focus of the survey is on theoretical work rather than the experimental literature which presents evidence of actual behavior that differs from what classic rationality predicts. The general framework is as follows. Given a set of exogenous variables, the economic agent needs to choose an element from the choice set that is avail- able to him, in order to optimize the expected value of an objective function (assuming his preferences are representable by such a function). If this problem is too complex for the agent to deal with, one or more of its elements is simplified. Each bounded rationality theory is categorized according to the most relevant element it simplifes. Chapter 2 proposes a novel theory of bounded rationality. Much in the same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking is costly in the sense that agents have to pay a cost for performing mental operations. In our model, if they choose not to think, such cost is avoided, but they are left with a single alternative, labeled the default choice. We exemplify the idea with a very simple model of consumer choice and identify the concept of isofin curves, i.e., sets of default choices which generate the same utility net of thinking cost. Then, we apply the idea to a linear symmetric Cournot duopoly, in which the default choice can be interpreted as the most natural quantity to be produced in the market. We find that, as the thinking cost increases, the number of firms thinking in equilibrium decreases. More interestingly, for intermediate levels of thinking cost, an equilibrium in which one of the firms chooses the default quantity and the other best responds to it exists, generating asymmetric choices in a symmetric model. Our model is able to explain well-known regularities identified in the Cournot experimental literature, such as the adoption of different strategies by players (Huck et al. , 1999), the inter temporal rigidity of choices (Bosch-Dom enech & Vriend, 2003) and the dispersion of quantities in the context of di cult decision making (Bosch-Dom enech & Vriend, 2003). Chapter 3 applies a model of bounded rationality in a game-theoretic set- ting to the well-known turnout paradox in large elections, pivotal probabilities vanish very quickly and no one should vote, in sharp contrast with the ob- served high levels of turnout. Inspired by the concept of rhizomatic thinking, introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per- son is self-delusional in the sense that, when making a decision, she believes that a fraction of the people who support the same party decides alike, even if no communication is established between them. This kind of belief simplifies the decision of the agent, as it reduces the number of players he believes to be playing against { it is thus a bounded rationality approach. Studying a two-party first-past-the-post election with a continuum of self-delusional agents, we show that the turnout rate is positive in all the possible equilibria, and that it can be as high as 100%. The game displays multiple equilibria, at least one of which entails a victory of the bigger party. The smaller one may also win, provided its relative size is not too small; more self-delusional voters in the minority party decreases this threshold size. Our model is able to explain some empirical facts, such as the possibility that a close election leads to low turnout (Geys, 2006), a lower margin of victory when turnout is higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen & Marsh, 1997).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Widely used in cancer treatment, chemotherapy still faces hindering challenges, ranging from severe induced toxicity to drug resistance acquisition. As means to overcome these setbacks, newly synthetized compounds have recently come into play with the basis of improved pharmacokinetic/pharmacodynamic properties. With this mind-set, this project aimed towards the antiproliferative potential characterization of a group of metallic compounds. Additionally the incorporation of the compounds within a nanoformulation and within new combination strategies with commercial chemotherapeutic drugs was also envisaged. Cell viability assays presented copper (II) compound (K4) as the most promising, presenting an IC50 of 6.10 μM and 19.09 μM for HCT116 and A549 cell line respectively. Exposure in fibroblasts revealed a 9.18 μM IC50. Hoechst staining assays further revealed the compound’s predisposition to induce chromatin condensation and nuclear fragmentation in HCT116 upon exposure to K4 which was later demonstrated by flow cytometry and annexin V-FITC/propidium iodide double staining analysis (under 50 % cell death induction). The compound further revealed the ability to interact with major macromolecules such as DNA (Kb = 2.17x105 M-1), inducing structural brakes and retardation, and further affecting cell cycle progression revealing delay in S-phase. Moreover BSA interactions were also visible however not conclusive. Proteome profiling revealed overexpression of proteins involved in metabolic activity and underexpression of proteins involved in apoptosis thus corroborating Hoechst and apoptosis flow cytometry data. K4 nanoformulation suffered from several hindrances and was ill succeeded in part due to K4’s poor solubility in aqueous buffers. Other approaches were considered in this regard. Combined chemotherapy assays revealed high cytotoxicity for afatinib and lapatinib strategies. Lapatinib and K4 proteome profiling further revealed high apoptosis rates, high metabolic activity and activation of redundant proteins as part of compensatory mechanisms.