7 resultados para heterogeneous panel nonlinear unit root test
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Statistics and Information Management
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
“Cork taint” is a major problem in wine industry and is caused by contamination of wines. This contamination is usually attributed to wine cork stoppers and 2,4,6-trichloroanisole (2,4,6-TCA) is one of the compounds mostly associated to this off-flavour. In this work, a consumer panel performed “forced choice” triangular tests in order to measure Odour Detection Thresholds (ODT) and Taste Detection Thresholds (TDT) of 2,4,6-TCA in water, hydro-alcoholic solutions (11.5% and 18% ethanol) and white and red wines. A paired preference test was also performed by the panel in order to measure Odour Rejection Threshold (ORT) in white and red wine spiked with 2,4,6-TCA. Results obtained show that the ODT and the TDT for 2,4,6-TCA in water were 0.2 and 0.3 ng/L, respectively. In hydro-alcoholic solutions with 11.5% and 18% ethanol the ODT were 4 and 10 ng/L respectively. In red wine the ODT and the TDT were 0.9 and 1.7 ng/L and in white wine were 1.5 and 1.0 ng/L respectively. ORT for white was 10.4 ng/L and for red wines 16.0 ng/L. These results suggest that although this group of consumers detected very low concentrations of 2,4,6-TCA in wines, they did not reject the wine at these low concentration values.
Resumo:
RESUMO - A segurança do doente é um tema que tem sido amplamente estudado por todo o mundo. Com o desenvolvimento do conhecimento, das técnicas e o advento das learning organizations é possível detectar as áreas onde existe potencial risco, conhecer o número de incidentes de forma sistemática, promover a evolução das técnicas nas áreas mais urgentes, determinar o impacto de todos os incidentes e eventos adversos, aprender com eles e promover modificações nas organizações. A neonatologia não foi excepção, pelo que se pretende a criação e validação de um sistema de notificação de eventos adversos e de incidentes, anónimo e não punitivo, adaptado a uma Unidade de Cuidados Intermédios Neonatal. O delineamento do estudo passou pela revisão bibliográfica para a construção de um sistema e posterior análise do mesmo por um painel de especialistas, para a selecção e consenso de itens que integraram o modelo. Por fim este sistema foi sujeito a um pré-teste. Com a aplicação da Técnica de Grupo Nominal constatou-se que a confidencialidade dos dados é um tema muito sensível aos profissionais. Na aplicação do pré-teste as categorias de incidentes notificados relacionam-se com medicação, ventilação e identificação. Assim sendo, este sistema detém validade interna, no entanto com a aplicação do pré-teste verificou-se que este perde validade externa, pelo que os resultados apresentados neste projecto de investigação não podem ser generalizados. A notificação é uma área para a qual os profissionais estão sensibilizados, no entanto, ainda encontra muitos entraves à sua implementação e consequentemente à colheita de dados.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions.