9 resultados para full scale wall frame tests
Resumo:
A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Sanitary Engineering in the Faculty of Sciences and Technology of the New University of Lisbon
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Sanitária
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente,perfil Sanitária
Resumo:
Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
The present work is divided in two parts: Part 1 is focused on the analysis and treatment of a 19th century portrait of Domingos Affonso, which belongs to the Ecomuseu Municipal do Seixal; and Part 2, which is entitled “The Microclimate Frame Project” is focused on the study of Artsorb® and on the planning of a microclimate frame for the painting. In Part 1, a study of the painting’s materials was performed using complementary analytical techniques and the painting’s condition was carefully evaluated. The painting exhibited signs of mould growth, and a more detailed investigation was made of this topic to understand if the fungal community was active and if it represented a real danger to the painting. A treatment was proposed, appropriate to the painting’s condition. A description of the treatment carried out, comprising the treatment options, is also present in this section. Within the study of the microclimate frame, in Part 2, the study of the potential corrosiveness of Artsorb® was a central subject. Artsorb® sheets are one of the most widely used materials for buffering relative humidity fluctuations in microclimate frames and its reported excellent performance is enhanced by its availability in lightweight sheets that can be easily placed inside microclimate frames. However, concerns have arisen regarding the presence of the corrosive salt lithium chloride in the composition of this buffer. Consequently, the present work also aimed to understand the potential risks of using Artsorb® and the possibility of avoiding exposure of lithium chloride to the artworks through the use of Tyvek®. Results from the preliminary tests seem to indicate that Artsorb® releases lithium chloride into air. This study also showed that a Tyvek® cover over Artsorb® reduces but does not eliminate evidence of chlorine contamination, and it significantly reduces the effectiveness of the buffering material. Considering that Artsorb® appears to be unsuitable due to the release of the corrosive salt, that Tyvek® was not efficient as a barrier for lithium chloride or as a permeable material to enable the proper functioning of Artsorb®, the buffering material proposed for the use in the microclimate frames is silica gel without indicator. Based on the choice of buffering material, as a result of this study, a microclimate frame is proposed.