10 resultados para fibrewise map and homotopy
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.
Resumo:
One of the objectives of this study is to perform classification of socio-demographic components for the level of city section in City of Lisbon. In order to accomplish suitable platform for the restaurant potentiality map, the socio-demographic components were selected to produce a map of spatial clusters in accordance to restaurant suitability. Consequently, the second objective is to obtain potentiality map in terms of underestimation and overestimation in number of restaurants. To the best of our knowledge there has not been found identical methodology for the estimation of restaurant potentiality. The results were achieved with combination of SOM (Self-Organized Map) which provides a segmentation map and GAM (Generalized Additive Model) with spatial component for restaurant potentiality. Final results indicate that the highest influence in restaurant potentiality is given to tourist sites, spatial autocorrelation in terms of neighboring restaurants (spatial component), and tax value, where lower importance is given to household with 1 or 2 members and employed population, respectively. In addition, an important conclusion is that the most attractive market sites have shown no change or moderate underestimation in terms of restaurants potentiality.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
RESUMO: A integração da saúde mental à atenção básica é a recomendação feita para facilitar o acesso ao tratamento. A pesquisa teve por objetivo mapear e analisar os facilitadores e as barreiras ao acesso ao tratamento em saúde mental da Microrregião de Itajubá, estado de Minas Gerais, Brasil, composta por 15 municípios. A metodologia pautou-se na triangulação dos métodos, combinando a abordagem quantitativa e qualitativa de pesquisa. Para tal foi feito o mapeamento da capacidade instalada dos recursos existentes e identificação das principais lacunas com base nos parâmetros da saúde pública, a partir de roteiros de entrevistas e grupos focais com os principais atores sociais implicados. Constatou-se que o maior facilitador ao acesso ao tratamento tem sido a atuação das equipes de PSF (Programa Saúde da Família), que atuam diretamente nas comunidades. Outros facilitadores foram: a atuação dos CRAS (Centro de Referência de Assistência Social); a existência de um CAPS (Centro de Atenção Psicossocial), embora não credenciado ao SUS (Sistema Único de Saúde); Colegiados de Saúde Mental que promovem discussões, informação, educação, e pressionam os municípios para a implantação de serviços de saúde mental. A falta de “vontade política”, isto é, uma intervenção mais clara da gestão pública da saúde, com estabelecimento de prioridades para prover a ampliação do acesso, foi identificada como a maior barreira a ser enfrentada na microrregião, especialmente por falta de organização e planejamento das ações em saúde mental. Serviços que trabalham de forma isolada, sem a construção de uma rede; pouca participação política dos usuários dos serviços de saúde mental; e falta de recursos humanos, e profissionais pouco preparados para a função compõem as outras barreiras de acesso. Vê-se que diante dos facilitadores e barreiras expostos é preciso que os municípios realizem um levantamento sistemático, a fim de criar um plano de ação em saúde mental para compartilhar informações, recursos, serviços, disponibilidade, disposição e ações em rede.-------------- ABSTRACT: Integrating mental health care in primary-care services is recommended in order to improve access to treatment. Access to mental health treatment has been a worldwide debated theme. In Brazil, with the Psychiatric Reform, there has been a change of paradigm in the way of treating persons with mental disorders. Various health devices were created, building a net of treatment and care that replaces the asylum system and where human rights are respected and defended and the offered treatment is the closest possible to their social space. The research aims to map and analyse the barriers and the facilitators to mental health treatment in the micro-region of Itajubá, state of Minas Gerais/Brazil, made up of 15 counties. The methodology was based on the triangulation of methods, combining quantitative and qualitative research. For that, a mapping of the installed capacity of the existent resource was carried out; identification of the main voids based on the parameters of public health through scripts of interviews and focus groups with the social actors involved. It was found that the main facilitator to treatment has been the performance of PSF, who act directly in the communities. Other facilitators also stand out: the work of CRAS; the existence of CAPS, although not accredited to SUS; Mental Health Collegiate, promoting discussions, information, education, and forcing pressure on the counties for the implantation of mental health services. The lack of political will was identified as the major barrier to be faced in the micro-region, especially due to lack of organization and planning in the actions towards mental health. The services working isolatedly, without a communication net, and the lack of human resources as well as poorly prepared professional, are the main difficulties faced by access to mental health treatment. Becomes clear that the counties need to undertake a systematic survey towards creating a plan of action in mental health, in order to share information, resources, services, availability, disposition and networking.
Resumo:
Botnets are a group of computers infected with a specific sub-set of a malware family and controlled by one individual, called botmaster. This kind of networks are used not only, but also for virtual extorsion, spam campaigns and identity theft. They implement different types of evasion techniques that make it harder for one to group and detect botnet traffic. This thesis introduces one methodology, called CONDENSER, that outputs clusters through a self-organizing map and that identify domain names generated by an unknown pseudo-random seed that is known by the botnet herder(s). Aditionally DNS Crawler is proposed, this system saves historic DNS data for fast-flux and double fastflux detection, and is used to identify live C&Cs IPs used by real botnets. A program, called CHEWER, was developed to automate the calculation of the SVM parameters and features that better perform against the available domain names associated with DGAs. CONDENSER and DNS Crawler were developed with scalability in mind so the detection of fast-flux and double fast-flux networks become faster. We used a SVM for the DGA classififer, selecting a total of 11 attributes and achieving a Precision of 77,9% and a F-Measure of 83,2%. The feature selection method identified the 3 most significant attributes of the total set of attributes. For clustering, a Self-Organizing Map was used on a total of 81 attributes. The conclusions of this thesis were accepted in Botconf through a submited article. Botconf is known conferênce for research, mitigation and discovery of botnets tailled for the industry, where is presented current work and research. This conference is known for having security and anti-virus companies, law enforcement agencies and researchers.