5 resultados para erasing wavelength
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.
Resumo:
The thesis is divided into two parts corresponding to structural studies on two different proteins. The first part concerns the study of two UDP-glucose dehydrogenases (UGDs) from Sphingomonas elodea ATCC 31461 and Burkholderia cepacia IST 408, both involved in exopolysaccharide production. Their relevance arises because some of these bacterial exopolysaccharides are valuable as established biotechnological products, the former case, whilst others are highly problematic, when used by pathogens in biofilm formation over biological surfaces, as the latter case, namely in the human lungs. The goal of these studies is to increase our knowledge regarding UGDs structural properties, which can potentiate either the design of activity enhancers to respond to the increased demand of useful biofilms, or the design of inhibitors of biofilm production, in order to fight invading pathogens present in several infections. The thesis reports the production and crystallisation of both proteins, the determination of initial phases by single-wavelength anomalous dispersion (SAD) in S. elodea crystals using a seleno-methionine isoform, and phasing of B. cepacia crystals by molecular replacement (MR) using the S. elodea model, as well as the refinement, structural analysis and comparison between the several UGDs structures available during this work.(...)
Resumo:
Dissertation presented to obtain the PhD degree in Electrical and Computer Engineering - Electronics
Resumo:
J Biol Inorg Chem. 2008 Jun;13(5):737-53. doi: 10.1007/s00775-008-0359-6
Resumo:
The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals.