7 resultados para eletroforese em gel de poliacrilamida


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A celulose, principal componente da parede celular vegetal e o composto orgânico mais abundante da biosfera, possui inúmeras aplicações biotecnológicas. O microrganismo anaeróbio Clostridium thermocellum (C.thermocellum) tem sido alvo de grande interesse pela sua capacidade em degradar eficientemente a celulose e outros componentes da parede celular vegetal, por meio de um complexo multi-enzimático altamente eficiente, denominado de celulossoma. A montagem deste complexo ocorre através de uma proteína multi-modular denominada CipA. Esta proteína estrutural possui módulos não catalíticos (coesinas tipo I) que se ligam a módulos complementares (doquerinas tipo I) presentes nas enzimas celulolíticas modulares. A CipA possui ainda um módulo doquerina de tipo II que permite a ancoragem deste complexo multi-enzimático à parede celular da bactéria. Na presente dissertação foram utilizadas as metodologias de Cristalografia de Raios-X, para caracterizar a interação coesina-doquerina a nível atómico e molecular, e de Microarrays, com o intuito de estudar as possíveis especifidades e afinidades dessas interações. Com base na primeira técnica foram elucidadas as estruturas do módulo coesina C4 da CipA em complexo com a doquerina da enzima modular Xyn10B e do módulo coesina C9 isolado. As estruturas foram comparadas com o complexo do módulo coesina C2-doquerina Xyn10B já publicado. Esta análise encontra-se descrita no capítulo 3. Por último, a técnica de Microarrays, associada à eletroforese em gel de poliacrilamida em condições nativas, permitiu a caracterização das diferenças de afinidade e especificidade entre os vários pares coesina-doquerina dos celulossomas de C. thermocellum e de Rumminococcus flavefaciens (R. flavefaciens). As especificidades e afinidades dos módulos doquerina, dos celulossomas mencionados anteriormente estão descritas no capítulo 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As bactérias redutoras de sulfato (BRS) são um grupo diversificado de micro-organismos anaeróbios que obtêm energia a partir da redução dissimilativa do sulfato. Algumas espécies de BRS possuem versatilidade a nível respiratório, como é o caso de Desulfovibrio desulfuricans ATCC 27774, devido à utilização de aceitadores finais de eletrões alternativos. Neste contexto, o objetivo da primeira parte desta dissertação consistiu na identificação das ferramentas metabólicas (proteínas) envolvidas na flexibilidade respiratória desta bacteria induzidas por diferentes aceitadores de eletrões (nitrato vs sulfato). Assim, os extratos proteicos totais de células de D. desulfuricans crescidas em meios VMN com nitrato ou sulfato, foram analisados por eletroforese bidimensional (2DE), num gradiente de pH 4 - 7. Nas condições experimentais testadas, foram observados 604 e 519 spots de proteínas nos géis de células crescidas em meio contendo nitrato ou sulfato, respetivamente. Pela avaliação estatística foi possível observar aproximadamente 25 % de spots diferenciais. Os resultados obtidos sugerem que na presença de nitrato, a bactéria não só cresce mais rapidamente e com maior rendimento, como também produz uma maior quantidade de proteínas. Estes dados foram relacionados com a adaptação de D. desulfuricans ao substrato respiratório alternativo. Tal como esperado, nos ensaios das atividades enzimáticas das redutases do nitrito e do nitrato, foi possível observar maior atividade nos extratos das células crescidas em nitrato do que em sulfato. As actinobactérias marinhas do género Salinispora, têm vindo a ser exploradas como fontes de biofármacos naturais. Assim, na segunda parte deste trabalho, realizou-se um estudo preliminar, que pretendeu caracterizar as proteínas envolvidas na biossíntese destes compostos bioactivos em S. arenicola e de S. pacifica. Para tal, foi utilizada uma abordagem proteómica diferencial, baseada em 2DE. Surpreendentemente, os perfis proteicos das duas espécies mostraram-se bastante distintos, tendo-se identificado apenas 37 spots comuns entre os 650 observados no gel de S. arenicola e 510 no gel de S. pacifica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.