7 resultados para drug binding site
Resumo:
FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011
Resumo:
Resumo: RodZ é um componente do sistema morfogenético das células bacterianas. É uma proteína transmembranar que localiza em bandas ao longo do eixo longitudinal da célula. Em Bacillus subtilis, RodZ consiste numa porção citoplasmática, RodZn, e em uma parte extra-citoplasmática, RodZc. RodZn contém um domínio em helixturn- helix (HTH), enquanto que RodZc pode ser dividido num domínio coiled-coil e num domínio terminal C, de função desconhecida. Um segmento transmembranar (TM) único separa RodZn de RodZc. A eliminação de rodZ causa alongamento do nucleóide e leva à produção de células polares nucleadas. Aqui, mostramos que RodZn é estruturado, estável e em hélice α. Descobrimos que as substituições Y32A e L33A na suposta hélice de reconhecimento (3) do motivo HTH, bem como as substituições Y49A e F53A, fora do motivo HTH (4), causam divisão assimétrica, mas apenas as últimas levam à deslocalização sub-celular de RodZ. Sugerimos que as hélices 3 e 4 são utilizadas para uma interacção proteína-proteína ou proteína- DNA essencial para divisão celular enquanto que 4 deve contactar um componente do citosqueleto, possivelmente MreB, uma vez que a correcta localização sub-celular de RodZ depende desta proteína. Em todos os mutantes as células polares são anucleadas, pelo que concluímos que o alongamento do nucleóide não é um prérequisito para divisão assimétrica. RodZc é largamente não estruturado mas com conteúdo de folha , sendo estabilizado pelo domínio coiled-coil. Mostramos uma relação homóloga entre RodZc e a bomba de transporte Na+/Ca2+ NCX1 e identificámos dois resíduos no domínio C, G265 e N275, essenciais para a manutenção da forma celular. Estes resíduos fazem parte de um motivo em gancho que pode actuar como um local de interacção com um ligando desconhecido. RodZn e RodZc são monoméricos em solução. Contudo, na membrana, RodZ interage consigo própria num sistema de dois híbridos (Split-Ubiquitin) em levedura, sugerindo que possa formar multímeros in vivo.-----------ABSTRACT: RodZ is a transmembrane component of the bacterial core morphogenic apparatus. RodZ localizes in bands long the longitudinal axis of the cell, and it is though to functionally link the cell wall to the actin cytoskeleton. In Bacillus subtilis, RodZ consists of a cytoplasmic moiety, RodZn, and an extracytoplasmic moiety, RodZc. RodZn contains a predicted helix-turn-helix domain, whereas RodZc is thought to contain a coiled-coil region and a terminal C domain of unknown function. A single transmembrane domain separates RodZn from RodZc. Deletion of rodZ causes elongation of the nucleoid and leads to the production of polar minicells containing DNA. Here, we have studied the structure and function of RodZn and RodZc. We show that RodZn is a stable, folded, -helical domain. We discovered that the Y32A and L33A substitutions within the presumptive recognition helix (3) of the HTH motif, as well as the Y49A and F53A substitutions outside of the HTH motif (in 4) cause asymmetric cell division. However, only the substitutions in 4 cause sub-celular delocalization of RodZ. We suggest that 3 and 4 are used for a protein-protein or protein-DNA interaction important for cell division, whereas 4 is likely to contact a cytoskeletal component, presumably MreB. The polar cells formed by all the mutants are anucleate. We conclude that nucleoid elongation is not a prerequisite for asymmetric division. RodZc appears to be a largely unstructured domain, with some -sheet content, and is stabilized by the coiled-coil region. We show a homology relationship between RodZc and the NCX1 Na+/Ca2+ transporter and we found two residues within the C domain, G265 and N275, that are important for cell shape determination. These residues are predicted to be essential determinants of a claw-like motif, which may act as a binding site for an unknown ligand. Both the isolated RodZn and RodZc proteins are monomeric in solution. However, because full-length RodZ interacts with itself in a split-ubiquitin yeast two-hybrid assay, we suggest that it may dimerize or form higher order multimers in vivo.
Resumo:
Inorganic Chemistry 50(21):10600-7
Resumo:
J Biol Inorg Chem (2010) 15:409–420 DOI 10.1007/s00775-009-0613-6
Resumo:
Dissertação para obtenção do Grau de Doutor em Bioquímica, ramo de Biotecnologia
Resumo:
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.