37 resultados para diffuse-interface method
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Void formation during the injection phase of the liquid composite molding process can be explained as a consequence of the non-uniformity of the flow front progression. This is due to the dual porosity within the fiber perform (spacing between the fiber tows is much larger than between the fibers within in a tow) and therefore the best explanation can be provided by a mesolevel analysis, where the characteristic dimension is given by the fiber tow diameter of the order of millimeters. In mesolevel analysis, liquid impregnation along two different scales; inside fiber tows and within the open spaces between the fiber tows must be considered and the coupling between the flow regimes must be addressed. In such cases, it is extremely important to account correctly for the surface tension effects, which can be modeled as capillary pressure applied at the flow front. Numerical implementation of such boundary conditions leads to illposing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. A numerical procedure was formulated and is implemented in an existing Free Boundary Program to reduce this error significantly.
Resumo:
Submitted in part fulfillment of the requirements for the degree of Master in Computer Science
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Sustainable Construction, Materials and Practice, p. 426-432
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Ciências da Comunicação
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Geológica (Georrecursos)
Resumo:
Trabalho de Projecto de Mestrado em Ciências de Comunicação Variante Novos Media e Práticas Web
Resumo:
RESUMO: Os biomarcadores tumorais permitem identificar os doentes com maior risco de recorrência da doença, predizer a resposta tumoral à terapêutica e, finalmente, definir candidatos a novos alvos terapêuticos. Novos biomarcadores são especialmente necessários na abordagem clínica dos linfomas. Actualmente, esses tumores são diagnosticados através de uma combinação de características morfológicas, fenotípicas e moleculares, mas o prognóstico e o planeamento terapêutico estão quase exclusivamente dependentes de características clínicas. Estes factores clínicos são, na maioria dos linfomas, insuficientes numa proporção significativa dos doentes, em particular, aqueles com pior prognóstico. O linfoma folicular (LF) é, globalmente, o segundo subtipo mais comum de linfoma. É tipicamente uma doença indolente com uma sobrevida média entre os 8 e 12 anos, mas é geralmente fatal quando se transforma num linfoma agressivo de alto grau, habitualmente o linfoma difuso de grandes células B (LDGCB). Morfologicamente e funcionalmente, as células do LF recapitulam as células normais do centro germinativo na sua dependência de sobrevivência do microambiente não-tumoral, especialmente das células do sistema imunológico. Biomarcadores preditivos de transformação não existem pelo que um melhor conhecimento da biologia intrínseca de progressão do LF poderá revelar novos candidatos. Nesta tese descrevo duas abordagens distintas para a descoberta de novos biomarcadores. A primeira, o estudo da expressão global de genes ('genomics') obtidos por técnicas de alto rendimento que analisam todo o genoma humano sequenciado, permitindo identificar novas anomalias genéticas que possam representar mecanismos biológicos importantes de transformação. São descritos novos genes e alterações genómicas associados à transformação do LF, sendo especialmente relevantes as relacionadas com os eventos iniciais de transformação em LDGCB. A segunda, baseou-se em várias hipóteses centradas no microambiente do LF, rico em vários tipos de células nãomalignas. Os estudos imunoarquitectural de macrófagos, células T regulatórias e densidade de microvasos efectuado em biopsias de diagnóstico de doentes com LF tratados uniformemente correlacionaram-se significativamente, e independentemente dos critérios clínicos, com a evolução clínica e, mais importante, com o risco de transformação em LDGCB. Nesta tese, foram preferencialmente utilizadas (e optimizadas) técnicas que permitam o uso de amostras fixadas em parafina e formalina (FFPET). Estas são facilmente acessíveis a partir das biopsias de diagnóstico de rotina presentes nos arquivos de todos os departamentos de patologia, facilitando uma transição rápida dos novos marcadores para a prática clínica. Embora o FL fosse o tema principal da tese, os novos achados permitiram estender facilmente hipóteses semelhantes a outros subtipos de linfoma. Assim, são propostos e validados vários biomarcadores promissores e relacionados com o microambiente não tumoral, sobretudo dependentes das células do sistema imunológico, como contribuintes importantes para a biologia dos linfomas. Estes sugerem novas opções para a abordagem clínica destas doenças e, eventualmente, novos alvos terapêuticos.------------- ABSTRACT: Cancer biomarkers provide an opportunity to identify those patients most at risk for disease recurrence, predict which tumours will respond to different therapeutic approaches and ultimately define candidate biomarkers that may serve as targets for personalized therapy. New biomarkers are especially needed in the management of lymphoid cancers. At present, these tumours are diagnosed using a combination of morphologic, phenotypic and molecular features but prognosis and overall survival are mostly dependent on clinical characteristics. In most lymphoma types, these imprecisely assess a significant proportion of patients, in particular, those with very poor outcomes. Follicular lymphoma (FL) is the second most common lymphoma subtype worldwide. It is typically an indolent disease with current median survivals in the range of 8-12 years, but is usually fatal when it transforms into an aggressive high-grade lymphoma, characteristically Diffuse Large B Cell Lymphoma (DLBCL). Morphologically and functionally it recapitulates the normal cells of the germinal center with its survival dependency on non-malignant immune and immunerelated cells. Informative markers of transformation related to the intrinsic biology of FL progression are needed. Within this thesis two separate approaches to biomarker discovery were employed. The first was to study the global expression of genes (‘genomics’) obtained using high-throughput, wholegenome-wide approaches that offered the possibility for discovery of new genetic abnormalities that might represent the important biological mechanisms of transformation. Gene signatures associated with early events of transformation were found. Another approach relied on hypothesis-driven concepts focusing upon the microenvironment, rich in several non-malignant cell types. The immunoarchitectural studies of macrophages, regulatory T cells and microvessel density on diagnostic biopsies of uniformly treated FL patients significantly predicted clinical outcome and, importantly, also informed on the risk of transformation. Techniques that enabled the use of routine formalin fixed paraffin embedded diagnostic specimens from the pathology department archives were preferentially used in this thesis with the goal of fulfilling a rapid bench-to-beside” translation for these new findings. Although FL was the main subject of the thesis the new findings and hypotheses allowed easy transition into other lymphoma types. Several promising biomarkers were proposed and validated including the implication of several non-neoplastic immune cells as important contributors to lymphoma biology, opening new options for better treatment planning and eventually new therapeutic targets and candidate therapeutics.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Based on the report for the “Project III” unit of the PhD programme on Technology Assessment under the supervision of Prof. António B. Moniz. This report was discussed also at the 2nd Winter School on Technology Assessment held at Universidade Nova de Lisboa, Caparica Campus, Portugal on December 2011.