7 resultados para design space exploration
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
This research addresses the problem of creating interactive experiences to encourage people to explore spaces. Besides the obvious spaces to visit, such as museums or art galleries, spaces that people visit can be, for example, a supermarket or a restaurant. As technology evolves, people become more demanding in the way they use it and expect better forms of interaction with the space that surrounds them. Interaction with the space allows information to be transmitted to the visitors in a friendly way, leading visitors to explore it and gain knowledge. Systems to provide better experiences while exploring spaces demand hardware and software that is not in the reach of every space owner either because of the cost or inconvenience of the installation, that can damage artefacts or the space environment. We propose a system adaptable to the spaces, that uses a video camera network and a wi-fi network present at the space (or that can be installed) to provide means to support interactive experiences using the visitor’s mobile device. The system is composed of an infrastructure (called vuSpot), a language grammar used to describe interactions at a space (called XploreDescription), a visual tool used to design interactive experiences (called XploreBuilder) and a tool used to create interactive experiences (called urSpace). By using XploreBuilder, a tool built of top of vuSpot, a user with little or no experience in programming can define a space and design interactive experiences. This tool generates a description of the space and of the interactions at that space (that complies with the XploreDescription grammar). These descriptions can be given to urSpace, another tool built of top of vuSpot, that creates the interactive experience application. With this system we explore new forms of interaction and use mobile devices and pico projectors to deliver additional information to the users leading to the creation of interactive experiences. The several components are presented as well as the results of the respective user tests, which were positive. The design and implementation becomes cheaper, faster, more flexible and, since it does not depend on the knowledge of a programming language, accessible for the general public.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Second International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications (AMICSA 2008), Sintra, Portugal, Setembro de 2008
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.