16 resultados para Wavelets and fast transform eavelet
Resumo:
Proceedings of the International Conference on Computational Intelligence in Medicine Healthcare, CIMED 2005, Costa da Caparica, June 29 - July 1, 2005
Resumo:
The Knowledge-based society brought a new way of living and working. The increasing decline of work in primary sector and traditional industries, related with the significant increase of employment in the service sector and in the knowledge work, changed the way companies and individuals establish their relations, the way work and life is organised. These changes are usual and fast and so the feeling of insecurity and unpredictability become more and more sharp. In this context, foresight exercises are necessary tools helping in the identification of the key variables and main trends of evolution. This report will present some foresight studies about work and skills in Europe and USA, in order to contribute to think about possible evolutions and trends.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
4th Conference COST ACTION FP1303 – Designing with Bio-based Materials – Challenges and opportiunities. INIA – CSIC, Madrid, 24-25 February 2016. Book of abstracts, T.Troya, J.Galván, D.Jones (Eds.), INIA and IETcc – CSIS, pg. 79-80 (ISBN: 978-91-88349-16-3)
Resumo:
A thesis submitted for the degree of Doctor of Philosophy
Resumo:
Dissertação apresentada para a obtenção do grau de doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
This thesis is one of the first reports of digital microfluidics on paper and the first in which the chip’s circuit was screen printed unto the paper. The use of the screen printing technique, being a low cost and fast method for electrodes deposition, makes the all chip processing much more aligned with the low cost choice of paper as a substrate. Functioning chips were developed that were capable of working at as low as 50 V, performing all the digital microfluidics operations: movement, dispensing, merging and splitting of the droplets. Silver ink electrodes were screen printed unto paper substrates, covered by Parylene-C (through vapor deposition) as dielectric and Teflon AF 1600 (through spin coating) as hydrophobic layer. The morphology of different paper substrates, silver inks (with different annealing conditions) and Parylene deposition conditions were studied by optical microscopy, AFM, SEM and 3D profilometry. Resolution tests for the printing process and electrical characterization of the silver electrodes were also made. As a showcase of the applications potential of these chips as a biosensing device, a colorimetric peroxidase detection test was successfully done on chip, using 200 nL to 350 nL droplets dispensed from 1 μL drops.