9 resultados para Transport of heat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canadian Journal of Civil Engineering 36(10) 1605–16

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Engenharia Sanitária

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zero valent iron nanoparticles (nZVI) are considered very promising for the remediation of contaminated soils and groundwaters. However, an important issue related to their limited mobility remains unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation. In this work, a generalized physicochemical model was developed and solved numerically to describe the nZVI transport through porous media under electric field, and with different electrolytes (with different ionic strengths). The model consists of the Nernst–Planck coupled system of equations, which accounts for the mass balance of ionic species in a fluid medium, when both the diffusion and electromigration of the ions are considered. The diffusion and electrophoretic transport of the negatively charged nZVI particles were also considered in the system. The contribution of electroosmotic flow to the overall mass transport was included in the model for all cases. The nZVI effective mobility values in the porous medium are very low (10−7–10−4 cm2 V−1 s−1), due to the counterbalance between the positive electroosmotic flow and the electrophoretic transport of the negatively charged nanoparticles. The higher the nZVI concentration is in the matrix, the higher the aggregation; therefore, low concentration of nZVI suspensions must be used for successful field application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia Bioquímica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formulation and use of lime mortars with ceramic particles has, in the past, been a very common technique. Knowledge of such used techniques and materials is fundamental for the successful rehabilitation and conservation of the built heritage. The durability that these mortars have shown encourages the study of the involved mechanisms, so that they may be adapted to the current reality. The considerable amount of waste from old ceramics factories which is sent for disposal might present an opportunity for the production of reliable improved lime mortars. In this paper a number of studies that characterize old building mortars containing ceramic fragments are reviewed. The most important research undertaken on laboratory prepared mortars with several heat treated clays types is presented, specifically with incorporated ceramic waste. Some studies on the pozzolanicity of heat treated clays are examined and the heating temperatures that seem most likely to achieve pozzolanicity are presented. It was verified that some heating temperatures currently used by ceramic industries might correspond to the temperatures that will achieve pozzolanicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to their high adsorption capacity of water vapor, earthen plasters can act as a moisture buffer, contributing to balance the relative humidity of the indoor environment of buildings. As a consequence of this capacity earthen plasters may also contribute to the perception of thermal comfort, since a high relative humidity increases the thermal conductivity of air and restricts skin evaporation, increasing the discomfort associated with the perception of heat or cold. Simultaneously, earthen plasters may also contribute to the indoor air quality. In one hand, by mitigating health problems of the respiratory system associated with indoor environment with high relative humidity, in which increases the risk of development of microorganisms usually responsible for infections, allergies or asthma. In the other hand, by mitigating the probability of inflammation of the respiratory system airways associated to exceedingly dry indoor environments. Therefore it also becomes expectable that earthen plasters may contribute for reducing the needs for air conditioning and mechanical ventilation in buildings and, thereby, also allowing the reduction of the associated energy consumption. The «Barrocal» region, located in the sedimentary basin of Algarve, South Portugal, presents geomorphological characteristics that promote the occurrence of soils with a clay mineralogy dominated by illite, which is a clay mineral characterized by a high adsorption capacity of water vapor and low expansibility. This fact turns expectable that these soils have a high potential for interior plastering. In order to evaluate this potential four mortars were formulated with an increasing content of clayey soil extracted from a selected clay quarry from «Barrocal» region. The results from the preliminary characterization campaign confirmed the reduced linear shrinkage of these mortars, as well as their high adsorption-desorption capacity, that is positively correlated with the content of clayey soil present in mortar formulation. However, the mechanical tests showed that the mechanical resistance of these mortars should be improved, for instance through the addition of natural fibers for reinforcement, which will be investigated in future research. This research contributed to increase certainty regarding the potential of clayey soils of the «Barrocal» sub-region of Algarve to produce mortars suitable for eco-efficient interior plastering.