14 resultados para Transgenerational programming
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The Intel R Xeon PhiTM is the first processor based on Intel’s MIC (Many Integrated Cores) architecture. It is a co-processor specially tailored for data-parallel computations, whose basic architectural design is similar to the ones of GPUs (Graphics Processing Units), leveraging the use of many integrated low computational cores to perform parallel computations. The main novelty of the MIC architecture, relatively to GPUs, is its compatibility with the Intel x86 architecture. This enables the use of many of the tools commonly available for the parallel programming of x86-based architectures, which may lead to a smaller learning curve. However, programming the Xeon Phi still entails aspects intrinsic to accelerator-based computing, in general, and to the MIC architecture, in particular. In this thesis we advocate the use of algorithmic skeletons for programming the Xeon Phi. Algorithmic skeletons abstract the complexity inherent to parallel programming, hiding details such as resource management, parallel decomposition, inter-execution flow communication, thus removing these concerns from the programmer’s mind. In this context, the goal of the thesis is to lay the foundations for the development of a simple but powerful and efficient skeleton framework for the programming of the Xeon Phi processor. For this purpose we build upon Marrow, an existing framework for the orchestration of OpenCLTM computations in multi-GPU and CPU environments. We extend Marrow to execute both OpenCL and C++ parallel computations on the Xeon Phi. We evaluate the newly developed framework, several well-known benchmarks, like Saxpy and N-Body, will be used to compare, not only its performance to the existing framework when executing on the co-processor, but also to assess the performance on the Xeon Phi versus a multi-GPU environment.
Resumo:
Machine ethics is an interdisciplinary field of inquiry that emerges from the need of imbuing autonomous agents with the capacity of moral decision-making. While some approaches provide implementations in Logic Programming (LP) systems, they have not exploited LP-based reasoning features that appear essential for moral reasoning. This PhD thesis aims at investigating further the appropriateness of LP, notably a combination of LP-based reasoning features, including techniques available in LP systems, to machine ethics. Moral facets, as studied in moral philosophy and psychology, that are amenable to computational modeling are identified, and mapped to appropriate LP concepts for representing and reasoning about them. The main contributions of the thesis are twofold. First, novel approaches are proposed for employing tabling in contextual abduction and updating – individually and combined – plus a LP approach of counterfactual reasoning; the latter being implemented on top of the aforementioned combined abduction and updating technique with tabling. They are all important to model various issues of the aforementioned moral facets. Second, a variety of LP-based reasoning features are applied to model the identified moral facets, through moral examples taken off-the-shelf from the morality literature. These applications include: (1) Modeling moral permissibility according to the Doctrines of Double Effect (DDE) and Triple Effect (DTE), demonstrating deontological and utilitarian judgments via integrity constraints (in abduction) and preferences over abductive scenarios; (2) Modeling moral reasoning under uncertainty of actions, via abduction and probabilistic LP; (3) Modeling moral updating (that allows other – possibly overriding – moral rules to be adopted by an agent, on top of those it currently follows) via the integration of tabling in contextual abduction and updating; and (4) Modeling moral permissibility and its justification via counterfactuals, where counterfactuals are used for formulating DDE.
Resumo:
Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.
Resumo:
Recaí sob a responsabilidade da Marinha Portuguesa a gestão da Zona Económica Exclusiva de Portugal, assegurando a sua segurança da mesma face a atividades criminosas. Para auxiliar a tarefa, é utilizado o sistema Oversee, utilizado para monitorizar a posição de todas as embarcações presentes na área afeta, permitindo a rápida intervenção da Marinha Portuguesa quando e onde necessário. No entanto, o sistema necessita de transmissões periódicas constantes originadas nas embarcações para operar corretamente – casos as transmissões sejam interrompidas, deliberada ou acidentalmente, o sistema deixa de conseguir localizar embarcações, dificultando a intervenção da Marinha. A fim de colmatar esta falha, é proposto adicionar ao sistema Oversee a capacidade de prever as posições futuras de uma embarcação com base no seu trajeto até à cessação das transmissões. Tendo em conta os grandes volumes de dados gerados pelo sistema (históricos de posições), a área de Inteligência Artificial apresenta uma possível solução para este problema. Atendendo às necessidades de resposta rápida do problema abordado, o algoritmo de Geometric Semantic Genetic Programming baseado em referências de Vanneschi et al. apresenta-se como uma possível solução, tendo já produzido bons resultados em problemas semelhantes. O presente trabalho de tese pretende integrar o algoritmo de Geometric Semantic Genetic Programming desenvolvido com o sistema Oversee, a fim de lhe conceder capacidades preditivas. Adicionalmente, será realizado um processo de análise de desempenho a fim de determinar qual a ideal parametrização do algoritmo. Pretende-se com esta tese fornecer à Marinha Portuguesa uma ferramenta capaz de auxiliar o controlo da Zona Económica Exclusiva Portuguesa, permitindo a correta intervenção da Marinha em casos onde o atual sistema não conseguiria determinar a correta posição da embarcação em questão.
Resumo:
In the past few years Tabling has emerged as a powerful logic programming model. The integration of concurrent features into the implementation of Tabling systems is demanded by need to use recently developed tabling applications within distributed systems, where a process has to respond concurrently to several requests. The support for sharing of tables among the concurrent threads of a Tabling process is a desirable feature, to allow one of Tabling’s virtues, the re-use of computations by other threads and to allow efficient usage of available memory. However, the incremental completion of tables which are evaluated concurrently is not a trivial problem. In this dissertation we describe the integration of concurrency mechanisms, by the way of multi-threading, in a state of the art Tabling and Prolog system, XSB. We begin by reviewing the main concepts for a formal description of tabled computations, called SLG resolution and for the implementation of Tabling under the SLG-WAM, the abstract machine supported by XSB. We describe the different scheduling strategies provided by XSB and introduce some new properties of local scheduling, a scheduling strategy for SLG resolution. We proceed to describe our implementation work by describing the process of integrating multi-threading in a Prolog system supporting Tabling, without addressing the problem of shared tables. We describe the trade-offs and implementation decisions involved. We then describe an optimistic algorithm for the concurrent sharing of completed tables, Shared Completed Tables, which allows the sharing of tables without incurring in deadlocks, under local scheduling. This method relies on the execution properties of local scheduling and includes full support for negation. We provide a theoretical framework and discuss the implementation’s correctness and complexity. After that, we describe amethod for the sharing of tables among threads that allows parallelism in the computation of inter-dependent subgoals, which we name Concurrent Completion. We informally argue for the correctness of Concurrent Completion. We give detailed performance measurements of the multi-threaded XSB systems over a variety of machines and operating systems, for both the Shared Completed Tables and the Concurrent Completion implementations. We focus our measurements inthe overhead over the sequential engine and the scalability of the system. We finish with a comparison of XSB with other multi-threaded Prolog systems and we compare our approach to concurrent tabling with parallel and distributed methods for the evaluation of tabling. Finally, we identify future research directions.
Resumo:
In the past years, Software Architecture has attracted increased attention by academia and industry as the unifying concept to structure the design of complex systems. One particular research area deals with the possibility of reconfiguring architectures to adapt the systems they describe to new requirements. Reconfiguration amounts to adding and removing components and connections, and may have to occur without stopping the execution of the system being reconfigured. This work contributes to the formal description of such a process. Taking as a premise that a single formalism hardly ever satisfies all requirements in every situation, we present three approaches, each one with its own assumptions about the systems it can be applied to and with different advantages and disadvantages. Each approach is based on work of other researchers and has the aesthetic concern of changing as little as possible the original formalism, keeping its spirit. The first approach shows how a given reconfiguration can be specified in the same manner as the system it is applied to and in a way to be efficiently executed. The second approach explores the Chemical Abstract Machine, a formalism for rewriting multisets of terms, to describe architectures, computations, and reconfigurations in a uniform way. The last approach uses a UNITY-like parallel programming design language to describe computations, represents architectures by diagrams in the sense of Category Theory, and specifies reconfigurations by graph transformation rules.
Resumo:
The definition and programming of distributed applications has become a major research issue due to the increasing availability of (large scale) distributed platforms and the requirements posed by the economical globalization. However, such a task requires a huge effort due to the complexity of the distributed environments: large amount of users may communicate and share information across different authority domains; moreover, the “execution environment” or “computations” are dynamic since the number of users and the computational infrastructure change in time. Grid environments, in particular, promise to be an answer to deal with such complexity, by providing high performance execution support to large amount of users, and resource sharing across different organizations. Nevertheless, programming in Grid environments is still a difficult task. There is a lack of high level programming paradigms and support tools that may guide the application developer and allow reusability of state-of-the-art solutions. Specifically, the main goal of the work presented in this thesis is to contribute to the simplification of the development cycle of applications for Grid environments by bringing structure and flexibility to three stages of that cycle through a commonmodel. The stages are: the design phase, the execution phase, and the reconfiguration phase. The common model is based on the manipulation of patterns through pattern operators, and the division of both patterns and operators into two categories, namely structural and behavioural. Moreover, both structural and behavioural patterns are first class entities at each of the aforesaid stages. At the design phase, patterns can be manipulated like other first class entities such as components. This allows a more structured way to build applications by reusing and composing state-of-the-art patterns. At the execution phase, patterns are units of execution control: it is possible, for example, to start or stop and to resume the execution of a pattern as a single entity. At the reconfiguration phase, patterns can also be manipulated as single entities with the additional advantage that it is possible to perform a structural reconfiguration while keeping some of the behavioural constraints, and vice-versa. For example, it is possible to replace a behavioural pattern, which was applied to some structural pattern, with another behavioural pattern. In this thesis, besides the proposal of the methodology for distributed application development, as sketched above, a definition of a relevant set of pattern operators was made. The methodology and the expressivity of the pattern operators were assessed through the development of several representative distributed applications. To support this validation, a prototype was designed and implemented, encompassing some relevant patterns and a significant part of the patterns operators defined. This prototype was based in the Triana environment; Triana supports the development and deployment of distributed applications in the Grid through a dataflow-based programming model. Additionally, this thesis also presents the analysis of a mapping of some operators for execution control onto the Distributed Resource Management Application API (DRMAA). This assessment confirmed the suitability of the proposed model, as well as the generality and flexibility of the defined pattern operators
Resumo:
Dissertação de Mestrado em Engenharia Informática