10 resultados para Time for Retirement Contribution
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
Dissertação para obtenção do Grau de Mestre em Lógica Computacional
Resumo:
Proceedings IGLC-19, July 2011, Lima, Perú
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications.
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
This paper reports a Scanning Electron Microscopy study of some samples from the leg 12, Deep Sea Drilling Project, sites 118 and 119. The chronostratigraphic distribution, the frequency of the species identified and the datation of the samples studied are presented. In accordance with the calcareous nannofossil zonation proposed by E. MARTINI (1971) the samples from site 118 are ascribed to the Upper Miocene while the samples from site 119 are located between the Lower (NN1) and the Upper Miocene (NN10).
Resumo:
This paper reports a Scanning Electron Microscopy study of some samples from the leg 12, Deep Sea Drilling Project, sites 118 and 119. The chronostratigraphic distribution, the frequency of the species identified and the datation of the samples studied are presented. In accordance with the calcareous nannofossil zonation proposed by E. MARTINI (1971) the samples from site 118 are ascribed to the Upper Miocene while the samples from site 119 are located between the Lower (NN1) and the Upper Miocene (NN10).
Resumo:
A canine tooth from Vale Furado is classified as Paralophiodon cf. leptorhynchum. The genus Paralophiodon indicates an age from Lower Lutetian to Auversian, Middle Eocene. As it belongs in the lineage of P. leptorhynchum, possible age span is furth~L~uced from Middle Lutetian to Auversian. This conclusion remains valid or nearly so even in the less probable case of confusion with some form included in P. isselensis lineage. Our previous (1975) datation for sandstones and pelites from Vale Furado is thus confirmed, and more accurately recognized. Paralophiodon and the crocodilian Iberosuchus are a rather sound basis for correlation with stratigraphical units near Zamora and Salamanca in Spain.
Resumo:
A brief introduction to the fractional continuous-time linear systems is presented. It will be done without needing a deep study of the fractional derivatives. We will show that the computation of the impulse and step responses is very similar to the classic. The main difference lies in the substitution of the exponential by the Mittag-Leffler function. We will present also the main formulae defining the fractional derivatives.