8 resultados para Timber physics.
Resumo:
Tese de doutoramento em Ciências da Educação, área de Teoria Curricular e Ensino das Ciências
Resumo:
Some of the properties sought in seismic design of buildings are also considered fundamental to guarantee structural robustness. Moreover, some key concepts are common to both seismic and robustness design. In fact, both analyses consider events with a very small probability of occurrence, and consequently, a significant level of damage is admissible. As very rare events,in both cases, the actions are extremely hard to quantify. The acceptance of limited damage requires a system based analysis of structures, rather than an element by element methodology, as employed for other load cases. As for robustness analysis, in seismic design the main objective is to guarantee that the structure survives an earthquake, without extensive damage. In the case of seismic design, this is achieved by guaranteeing the dissipation of energy through plastic hinges distributed in the structure. For this to be possible, some key properties must be assured, in particular ductility and redundancy. The same properties could be fundamental in robustness design, as a structure can only sustain significant damage if capable of distributing stresses to parts of the structure unaffected by the triggering event. Timber is often used for primary load‐bearing elements in single storey long‐span structures for public buildings and arenas, where severe consequences can be expected if one or more of the primary load bearing elements fail. The structural system used for these structures consists of main frames, secondary elements and bracing elements. The main frame, composed by columns and beams, can be seen as key elements in the system and should be designed with high safety against failure and under strict quality control. The main frames may sometimes be designed with moment resisting joints between columns and beams. Scenarios, where one or more of these key elements, fail should be considered at least for high consequence buildings. Two alternative strategies may be applied: isolation of collapsing sections and, provision of alternate load paths [1]. The first one is relatively straightforward to provide by deliberately designing the secondary structural system less strong and stiff. Alternatively, the secondary structural system and the bracing system can be design so that loss of capacity in the main frame does not lead to the collapse. A case study has been selected aiming to assess the consequences of these two different strategies, in particular, under seismic loads.
Resumo:
Workshop of COST Actions TU0601 and E55 September 21-22 2009, Ljubljana, Slovenia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ciências da Educação, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Estruturas e Geotecnia