8 resultados para Thermal-Degradation Products
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Conservação e Restauro, especialidade de Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Microbiology 154 (2008) 2719-2729
Resumo:
Construction and Building Materials 49 (2013), 315-327
Resumo:
9th International Masonry Conference 2014, 7-9 July, Universidade do Minho, Guimarães
Resumo:
High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.
Resumo:
Historical renders are exposed to several degradation processes that can lead to a wide range of anomalies,such as scaling, detachments, and pulverization. Among the common anomalies, the loss of cohesion and of adhesion are usually identified as the most difficult to repair; these anomalies still need to be deeply studied to design compatible, durable, and sustainable conservation treatments. The restitution of render cohesion can be achieved using consolidating products. Nevertheless, repair treatments could induce aesthetic alterations, and, therefore, are usually followed by chromatic reintegration. This work aims to study the effectiveness of mineral products as consolidants for lime-based mortars and simultaneously as chromatic treatments for pigmented renders. The studied consolidating products are prepared by mixing air lime,metakaolin, water, and mineral pigments. The idea of these consolidating and coloring products rises from a traditional lime-based technique, the limewash, widely diffused in southern Europe and in the Mediterranean area. Consolidating products were applied and tested on lime-based mortar specimens with a low binder–aggregate ratio and therefore with reduced cohesion. A physico-mechanical, microstructural, and mineralogical characterization was performed on untreated and treated specimens, in order to evaluate the efficacy and durability of the treatments. Accelerated aging tests were also performed to assess consolidant durability, when subjected to aggressive conditions. Results showed that the consolidants tested are compatible, effective, and possess good durability.
Resumo:
New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.