9 resultados para TESLA MAGNETIC-RESONANCE
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master in Biomedical Engineering
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
Based on the report for “Project IV” unit of the PhD programme on Technology Assessment (Doctoral Conference) at Universidade Nova de Lisboa (December 2011). This thesis research has the supervision of António Moniz (FCT-UNL and ITAS-KIT) and Michael Decker (Karlsruhe Institute of Technology-ITAS). Other members of the thesis committee are Carlos Alberto da Silva (University of Évora), José Maria de Albuquerque (Institute of Welding and Quality), Lotte Steuten (University of Twente), Mário Forjaz Secca (FCT-UNL) and Nelson Chibeles Martins (FCT-UNL).
Resumo:
Based on the report for the unit “Project III” of the PhD programme on Technology Assessment in 2011. The unit was supervised by Prof. António B. Moniz (FCT-UNL).
Resumo:
Biochemistry. 2008 Oct 14;47(41):10852-62. doi: 10.1021/bi801375q
Resumo:
Dissertation submitted in Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa for the degree of Master of Biomedical Engineering
Resumo:
RESUMO: Contexto: Indicadores fidedignos da composição corporal são importantes na orientação das estratégias nutricionais de recém-nascidos e pequenos lactentes submetidos a cuidados intensivos. O braço é uma região acessível para avaliar a composição corporal regional, pela medida dos seus compartimentos. A antropometria e a ultrassonografia (US) são métodos não invasivos, relativamente económicos, que podem ser usados à cabeceira do paciente na medição desses compartimentos, embora esses métodos não tenham ainda sido validados neste subgrupo etário. A ressonância magnética (RM) pode ser usada como método de referência na validação da medição dos compartimentos do braço. Objectivo: Validar em lactentes pré-termo, as medidas do braço por antropometria e por US. Métodos: Foi estudada uma coorte de recém-nascidos admitidos consecutivamente na unidade de cuidados intensivos neonatais, com 33 semanas de idade de gestação e peso adequado para a mesma, sem anomalias congénitas major e não submetidas a diuréticos ou oxigenoterapia no momento da avaliação. Nas vésperas da alta, foram efectuadas medições do braço, com ocultação, pelos métodos antropométrico, ultrassonográfico e RM. As medidas antropométricas directas foram: peso (P), comprimento (C), perímetro cefálico (PC), perímetro braquial (PB) e prega cutânea tricipital (PT). As área braquial total, área muscular (AM) e área adiposa foram calculadas pelos métodos de Jeliffee & Jeliffee e de Rolland-Cachera. Utilizando uma sonda PSH-7DLT de 7 Hz no ecógrafo Toshiba SSH 140A foram medidos os perímetros braquial e muscular e calculadas automaticamente as áreas braquial e muscular, sendo a área adiposa obtida por subtracção. Como método de referência foi utilizada a RM – Philips Gyroscan ACS-NT, Power-Track 1000 ®, 1.5 Tesla com uma antena de quadratura do joelho. Na análise estatística foram utilizados os métodos paramétricos e não paramétricos, conforme adequado. Resultados: Foram incluídas 30 crianças, nascidas com ( ±DP) 30.7 ±1.9 semanas de gestação, pesando 1380 ±325g, as quais foram avaliadas às 35.4 ±1.1 semanas de idade corrigida, quando pesavam 1786 ±93g. Nenhuma das medidas antropométricas, individualmente, constitui um indicador aceitável (r2 <0.5) das medições por RM. A melhor e mais simples equação alternativa encontrada é a que estima a AM (r2 = 0.56), derivada dos resultados da análise de regressão múltipla: AMRM = (P x 0.17) + (PB x 5.2) – (C x 6) – 150, sendo o P expresso em g, o C e o PB em cm. Nenhuma das medidas ultrassonográficas constitui um indicador aceitável (r2 <0.4) das medições por RM. Conclusões: A antropometria e as medidas ultrassonográficas do braço não são indicadores fidedignos da composição corporal regional em lactentes pré-termo, adequados para a idade de gestação.----------ABSTRACT: Background: Accurate predictors for body composition are valuable tools guiding nutritional strategies in infants needing intensive care. The upper-arm is a part of the body that is easily accessible and convenient for assessing the regional body composition, throughout the assessment of their compartments. Anthropometry and by ultrasonography (US) are noninvasive and relatively nonexpensive methods for bedside assessment of the upper-arm compartments. However, these methods have not yet been validated in infants. Magnetic resonance imaging (MRI) may be used as gold standard to validate the measurements of the upper-arm compartments. Objective: To validate the upper-arm measurements by anthropometry and by US in preterm infants. Methods: A cohort of neonates consecutively admitted at the neonatal intensive care unit, appropriate for gestational age, with 33 weeks, without major congenital abnormalities and not subjected to diuretics or oxygen therapy, was assessed. Before the discharge, the upper-arm was blindly measured by anthropometry, US and MRI. The direct anthropometric parameters measured were: weight (W), length (L), head circumference (HC), mid-arm circumference (MAC), and tricipital skinfold thickness. The arm area (AA), arm muscle area (AMA) and arm fat area were calculated applying the methods proposed by Jeliffee & Jeliffee and by Rolland-Cachera. Using the sonolayer Toshiba SSH 140A and the probe PSH-7DLT 7Hz, the arm and muscle perimeters were measured by US, the arm and muscle areas included were automatically calculated, and the fat area was calculated by subtraction. The MR images were acquired on a 1.5-T Philips Gyroscan ACS-NT, Power-Track 1000 scanner, and a knee coil was chosen for the upper-arm measurements. For statistical analysis parametric and nonparametric methods were used as appropriate. Results: Thirty infants born with ( ±SD) 30.7 ±1.9 weeks of gestational age and weighing 1380 ±325g were included in the study; they were assessed at 35.4 ±1.1 weeks of corrected age, weighing 1786 ±93g. None of the anthropometric measurements are individually acceptable (r2 <0.5) for prediction of the measurements obtained by MRI. The best and simple alternative equation found is the equation for prediction of the AMA (r2 = 0.56), derived from the results of multiple regression analysis: AMARM = (W x 0.17) + (MAC x 5.2) – (L x 6) – 150, being the W expressed in g, and L and MAC in cm. None of the ultrasonographic measurements are acceptable (r2 <0.5) predictors for the measurements obtained by MRI. Conclusions: The measurements of the upper-arm by anthropometry and by US are not accurate predictors for the regional body composition in preterm appropriate for gestational age infants.
Resumo:
Cancer is a well-known disease with a significant impact in society not only due to its incidence, more evident in more developed countries, but also due to the expenses related to medical treat-ments. Cancer research is considered an increasingly logical science with great potential for the development of new treatment options. Advances in nanomedicine have resulted in rapid devel-opment of nanomaterials with considerable potential in cancer diagnostics and treatment. The combination of diagnosis and treatment in a single nano-platform is named theranostic. In this PhD thesis a theranostic system for osteosarcoma was proposed, composed by a magnetic core, a polymeric coating, and a chemotherapeutic drug. The presence of a specific targeting agent, in this case a monoclonal antibody, provides high specificity to the proposed theranostic system. For the core of the proposed theranostic system, stable aqueous suspensions of superparamagnetic iron oxide nanoparticles with an average diameter of 9 nm were produced. Chitosan-based poly-meric nanoparticles with a hydrodynamic diameter around 150 nm were successfully produced. Incorporation of iron oxide nanoparticles into the polymeric ones increased their hydrodynamic diameter to at least 250 nm. A monoclonal antibody specific for a transmembranar protein (car-bonic anhydrase IX) present in solid tumors was developed by hybridoma technology. Functional hybridomas producing the desired monoclonal antibodies were obtained. The proposed theranostic system functionality was evaluated in separated parts of its components. Uncoated and coated iron oxide nanoparticles with chitosan-based polymers generated heat under the application of an external alternating magnetic field. Uncoated iron oxide nanoparticles sta-bilized with oleic acid were able to enhance contrast in magnetic resonance imaging. Drug deliv-ery studies were conducted in chitosan-based polymeric nanoparticles without and with the in-corporation of iron oxide nanoparticles, demonstrating to be an effective drug delivery platform for doxorubicin. The theranostic system proposed in this PhD thesis is very promising for cancer theranostic, demonstrating to be applicable in solid tumors such as osteosarcoma.
Resumo:
The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)