3 resultados para Symbiotic fungus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major factors threatening chimpanzees (Pan troglodytes verus) in Guinea-Bissau is habitat fragmentation. Such fragmentation may cause changes in symbiont dynamics resulting in increased susceptibility to infection, changes in host specificity and virulence. We monitored gastrointestinal symbiotic fauna of three chimpanzee subpopulations living within Cantanhez National Park (CNP) in Guinea Bissau in the areas with different levels of anthropogenic fragmentation. Using standard coproscopical methods (merthiolate-iodine formalin concentration and Sheather's flotation) we examined 102 fecal samples and identified at least 13 different symbiotic genera (Troglodytella abrassarti, Troglocorys cava, Blastocystis spp., Entamoeba spp., Iodamoeba butschlii, Giardia intestinalis, Chilomastix mesnili, Bertiella sp., Probstmayria gombensis, unidentified strongylids, Strongyloides stercoralis, Strongyloides fuelleborni, and Trichuris sp.). The symbiotic fauna of the CNP chimpanzees is comparable to that reported for other wild chimpanzee populations, although CNP chimpanzees have a higher prevalence of Trichuris sp. Symbiont richness was higher in chimpanzee subpopulations living in fragmented forests compared to the community inhabiting continuous forest area. We reported significantly higher prevalence of G. intestinalis in chimpanzees from fragmented areas, which could be attributed to increased contact with humans and livestock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.