18 resultados para Surface tension.
Resumo:
Undesirable void formation during the injection phase of the liquid composite molding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fiber perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fiber tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fiber tows and within the spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modeled as capillary pressure applied at the flow front. When continues Galerkin method is used, exploiting elements with velocity components and pressure as nodal variables, strong numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This article presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
Undesirable void formation during the injection phase of the liquid composite moulding process can be understood as a consequence of the non-uniformity of the flow front progression, caused by the dual porosity of the fibre perform. Therefore the best examination of the void formation physics can be provided by a mesolevel analysis, where the characteristic dimension is given by the fibre tow diameter. In mesolevel analysis, liquid impregnation along two different scales; inside fibre tows and within the open spaces between them; must be considered and the coupling between these flow regimes must be addressed. In such case, it is extremely important to account correctly for the surface tension effects, which can be modelled as capillary pressure applied at the flow front. Numerical implementation of such boundary conditions leads to ill-posing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. This contribution presents a numerical procedure, which was formulated and implemented in the existing Free Boundary Program in order to significantly reduce this error.
Resumo:
Void formation during the injection phase of the liquid composite molding process can be explained as a consequence of the non-uniformity of the flow front progression. This is due to the dual porosity within the fiber perform (spacing between the fiber tows is much larger than between the fibers within in a tow) and therefore the best explanation can be provided by a mesolevel analysis, where the characteristic dimension is given by the fiber tow diameter of the order of millimeters. In mesolevel analysis, liquid impregnation along two different scales; inside fiber tows and within the open spaces between the fiber tows must be considered and the coupling between the flow regimes must be addressed. In such cases, it is extremely important to account correctly for the surface tension effects, which can be modeled as capillary pressure applied at the flow front. Numerical implementation of such boundary conditions leads to illposing of the problem, in terms of the weak classical as well as stabilized formulation. As a consequence, there is an error in mass conservation accumulated especially along the free flow front. A numerical procedure was formulated and is implemented in an existing Free Boundary Program to reduce this error significantly.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
The Aquitaine Basin (southwestern France) is known since long ago for its richness in marine miocene deposits of various facies. A few stratotypes concerning this period have been described in the investigated area. The stratigraphical framework has been recently revised and the study of new exposures completes our knowledge on these levels. In the present work, the authors produce a biostratigraphical distribution of about 160 species (larger and smaller foraminifera), found in the surface exposures of Aquitaine, from the topmost Oligocene (Chattian) through to Middle Miocene (including Serravallian). As a rule, the common species without significant ranges have not bcen mentioned. The microfaunas of several exposures have been thoroughly revised, which has allowed to precise the distribution of many species and induced a few modifications of the results previously produced. Synonymy problems and new taxonomical revisions have been taken into account. Of course, this work will be probably submitted to some changes according to new research on the already known exposures or other more recently discovered.
Resumo:
Congrès de l’Association de Sociologues de Langue Française, Comité de Recherche n° 21 « Transactions Sociales », Istambul
Resumo:
The Aquitaine Basin (southwestem France) is known since long ago for its richness in marine miocene deposits ofvarious facies. A few stratotypes concerning this period have bccn described in the investigated area. The stratigraphical framework has becn recently revised and the study of new exposures completes our knowledge on these levels. In the present work, the authors produce a biostratigraphical distribution of about 160 species (Iarger and smaller foraminifera), found in the surface exposures of Aquitaine, from the topmost Oligocene (Chattian) through to Middle Miocene (including Serravallian). As a rule, the common species without significant ranges have not bcen mentioned. The microfaunas of several exposures have been thoroughly revised, which has allowcd to precise the distribution of many species and induced a few modifications of the results previously produced. Synonymy problems and new taxonomical revisions have been taken into account. Of course, this work will be probably submitted to some changes according to new research on the already known exposures or other more recently discovered.
Resumo:
Dissertação para Obtenção de Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
This dissertation is presented to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Application of Experimental Design techniques has proven to be essential in various research fields, due to its statistical capability of processing the effect of interactions among independent variables, known as factors, in a system’s response. Advantages of this methodology can be summarized in more resource and time efficient experimentations while providing more accurate results. This research emphasizes the quantification of 4 antioxidants extraction, at two different concentration, prepared according to an experimental procedure and measured by a Photodiode Array Detector. Experimental planning was made following a Central Composite Design, which is a type of DoE that allows to consider the quadratic component in Response Surfaces, a component that includes pure curvature studies on the model produced. This work was executed with the intention of analyzing responses, peak areas obtained from chromatograms plotted by the Detector’s system, and comprehending if the factors considered – acquired from an extensive literary review – produced the expected effect in response. Completion of this work will allow to take conclusions regarding what factors should be considered for the optimization studies of antioxidants extraction in a Oca (Oxalis tuberosa) matrix.