4 resultados para Supervised and Unsupervised Classification
Resumo:
A malária é uma doença infecciosa complexa, que resulta do “vírus” plasmodium, e manifesta-se sob cinco tipos distintos de espécies protozoários (plasmodium vivax, plasmodium ovale, plasmodium falciparum, plasmodium malariae e plasmodium Knowlesi), atacando sobretudo os glóbulos vermelhos. Considerada a quinta maior causa de morte por doenças infecciosas em todo o mundo após doenças respiratórias, VIH/SIDA, doenças diarreicas e tuberculose, no continente africano, a malária é considerada a segunda causa do aumento da mortalidade, após VIH/SIDA. No caso particular da Guiné-Bissau, esta constitui a principal causa do incremento da morbilidade e da mortalidade naquele país, onde, em 2012 foram notificados 129.684 casos de paludismo, dos quais 370 resultaram em óbitos. Partindo da realidade acima constatada, em particular, da complexidade e o impacto global da doença associada a uma forte mortalidade e morbilidade, concluiu-se ser necessário abordar esta temática, utilizando os SIG e a DR no sentido de determinar as regiões de elevado risco. Entendeu-se serem necessárias novas abordagens e novas ferramentas de análise dos dados epidemiológicos e consequentemente novas metodologias que possibilitem a determinação de áreas de risco por malária. O presente estudo, pretende demonstrar o papel dos SIG e DR na determinação das regiões de risco por malária. A metodologia utilizada centrou-se numa abordagem quantitativa baseada na hierarquização das variáveis. Pretende-se, assim abordar os impactos da malária e simultaneamente demonstrar as potencialidades dos SIG e das ferramentas de Análise Espacial no estudo da disseminação da mesma na Guiné-Bissau.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
The Portuguese Intelligence Services have their operational skills limited due to the grievances caused by the Dictatorship and, in particular, by its political police. With the help of historical elements, and by analyzing current legislation, we demonstrate that such grievances are today unjustified and misplaced, mainly taking into account the Risk Society’s multifaceted threats. Also part of our analysis is the impugnment of the Constitutional Court’s decision nº 413/2015, which pronounced unconstitutional the norm contained in Decree nº 426/XII, of the Republic’s Assembly, article nº 78, nº2, which intended to allow Intelligence Services access to the so-called “metadata”, as well as to tax and banking information. It is our understanding, and we demonstrate it in our dissertation, that should be allowed the access of, not only the above mentioned information, but also the means known as communications interception and undercover operations to the Intelligence Services, as long as properly supervised and inspected.
Resumo:
Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.