8 resultados para Structural damage detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: Enthesitis is the hallmark of spondyloarthritis (SpA), and is observed in all subtypes. Wide information on SpA abnormalities, including synovitis, tendinitis and enthesitis, can be efficiently perceived by Doppler ultrasound. Furthermore, several studies on imaging of enthesis showed that imaging techniques are better than clinical examination to detect enthesis alterations; and vascularized enthesitis detected by Doppler ultrasound appears to be a valuable diagnostic tool to confirm SpA diagnosis. However, data published until now concerning entheseal elementary alterations that characterize SpA enthesitis (enthesis inflammatory activity) or enthesopathy (permanent structural changes) reflect rather the authors’ empiric opinion than a methodological validation process. In this sense it seems crucial to identify elementary entheseal lesions associated with activity or damage, in order to improve monitoring and treatment response in SpA patients. The development of better assessment tools is today a challenge and a need in SpA. The first study of this thesis focused on the analysis of the reliability of inter-lector and inter-ultrasonography equipment of Madrid sonography enthesitis index (MASEI). Fundamental data for the remaining unrolling project validity. In the second and third studies we concerned about two entheseal elemental lesions: erosions and bursa. In literature erosions represent a permanent structural damage, being useful for monitoring joint injury, disease activity and therapeutic response in many rheumatic diseases; and to date, this concept has been mostly applied in rheumatoid arthritis (RA). Unquestionably, erosion is a tissue-related damage and a structural change. However, the hypothesis that we decided to test was if erosions represent a permanent structural change that can only grow and worsen over time, as occurs in RA, or a transitory alteration. A longitudinal study of early SpA patients was undertaken, and the Achilles enthesis was used as a model. Our results strongly suggested that previously detected erosions could disappear during the course of the disease, being consistent with the dynamic behavior of erosion over time. Based on these striking results it seems reasonable to suggest that the new-bone formation process in SpA could be associated with the resolution of cortical entheseal erosion over time. These results could also be in agreement with the apparent failure of anti-tumor necrosis factor (TNF) therapies to control bone proliferation in SpA; and with the relation of TNF-α, Dickkopf-related protein 1 (Dkk-1) and the regulatory molecule of the Wnt signaling pathway in the bone proliferation in SpA. In the same model, we then proceeded to study the enthesis bursa. Interestingly, the Outcome Measures in Rheumatology Clinical Trials (OMERACT) enthesopathy definition does not include bursa as an elementary entheseal lesion. Nonetheless, bursa was included in 46% of the enthesis studies in a recently systematic literature review, being in agreement with the concept of “synovio-entheseal complex” that includes the link between enthesitis and osteitis in SpA. It has been clarified in recent data that there is not only a close functional integration of the enthesis with the neighboring bone, but also a connection between enthesitis and synovitis. Therefore, we tried to assess the prevalence and relevance of the bursa-synovial lesion in SpA. Our findings showed a significant increase of Achilles bursa presence and thickness in SpA patients compared to controls (healthy/mechanical controls and RA controls). These results raise awareness to the need to improve the enthesopathy ultrasonographic definition. In the final work of this thesis, we have explored new perspectives, not previously reported, about construct validity of enthesis ultrasound as a possible activity outcome in SpA. We performed a longitudinal Achilles enthesis ultrasound study in patients with early SpA. Achilles ultrasound examinations were performed at baseline, six- and twelve-month time periods and compared with clinical outcome measures collected at basal visit. Our results showed that basal erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are higher in patients with Doppler signal in enthesis, and even that higher basal ESR, CRP and Ankylosing Spondylitis Disease Activity Score (ASDAS) predicted a higher Doppler signal (an ultrasound alteration accepted as representative of inflammation) six months later. Patients with very high disease activity assessed by ASDAS (>3.5) at baseline had significantly higher Achilles total ultrasound score verified at the same time; and ASDAS <1.3 predicted no Doppler signal at six and twelve months. This seems to represent a connection between classical biomarkers and clinical outcomes associated with SpA activity and Doppler signal, not only at the same time, but also for the following months. Remarkably, patients with inactive disease (ASDAS < 1.3) at baseline had no Doppler signal at six and twelve months. These findings reinforce the potential use of ultrasound related techniques for disease progression assessment and prognosis purposes. Intriguingly, Ankylosing Spondylitis Disease Activity Index (BASDAI) didn’t show significant differences between different cut-offs concerning ultrasound lesions or Doppler signal, while verified with ASDAS. These results seem to indicate that ASDAS reflects better than BASDAI what happens in the enthesis. The work herein discussed clearly shows the potential utility of ultrasound in enthesis assessment in SpA patients, and can be important for the development of ultrasound activity and structural damage scores for diagnosis and monitoring purposes. Therefore, local promotion of this technique constitutes a medical intervention that is worth being tested in SpA patients for diagnosis, monitoring and prognosis purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tenofovir (TFV) is one of the most used antiretroviral drugs. However, it is associated with tubular damage with mitochondria as a possible target. Tubulopathy precedes glomerular dysfunction, thus classic markers of renal function like the glomerular filtration rate (GFR) do not detect early TFV damage. Prediction and management of drug induced renal injury (DIRI) rely on the mechanisms of the drug insult and in optimal animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI, since the pronephros is structurally very similar to its human counterpart and is fully developed at 3.5 days postfertilization. The main aim of the present work was to evaluate the effects of TFV, as well as its pro-drug, tenofovir disoproxil fumarate (TDF), on the GFR and in mitochondria morphology in tubular cells of zebrafish larvae. Lethality curves were performed to understand the relationship between drug concentration and lethality. LC10 was selected to explore the renal function using the FITC-inulin assay and to analyze the mitochondrial toxicity by electron microscopy on larvae exposed to TDF, TFV, paracetamol and gentamicin (positive controls) or water (negative control). Lethality curves showed that gentamicin was the most lethal drug, followed by TDF, TFV and paracetamol. Gentamicin and paracetamol decreased the GFR, but no differences were found for either TDF or TFV, when compared to controls (%FITC Control = 33±8; %FITC TDF = 35±10; %FITC TFV = 30±10; %FITC Gentamicin = 46±17; %FITC Paracetamol = 83±14). Tubular mitochondria from treated larvae were notably different from non-treated larvae, showing swelling, irregular shapes, decreased mitochondria network, cristae disruption and loss of matrix granules. These results are in agreement with the effects of these drugs in humans and thus, demonstrate that zebrafish larvae can be a good model to assess the functional and structural damage associated with DIRI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structure and Infrastructure Engineering, 1-17

Relevância:

30.00% 30.00%

Publicador:

Resumo:

J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis was investigated the radiation hardness of the building blocks of a future flexible X-ray sensor system. The characterized building blocks for the pixel addressing and signal amplification electronics are high mobility semiconducting oxide transistors (HMSO-TFTs) and organic transistors (OTFTs), whereas the photonic detection system is based on organic semiconducting single crystals (OSSCs). TFT parameters such as mobility, threshold voltage and subthreshold slope were measured as function of cumulative X-ray dose. Instead for OSSCs conductivity and X-ray sensitivity were analysed after various radiation steps. The results show that ionizing radiation does not lead to degradation in HMSO-TFTs. Instead OTFTs show instability in mobility which is reduced up to 73% for doses of 1 kGy. OSSC demonstrate stable detector properties for the tested total dose range. As conclusion, HMSO-TFTs and OSSCs can be readily employed in the X-ray detector system allowing operation for total doses exceeding 1 kGy of ionizing radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).