2 resultados para Stabilised zirconia
Resumo:
RESUMO:Os microrganismos reagem à súbita descida de temperatura através de uma resposta adaptativa específica que assegura a sua sobrevivência em condições desfavoráveis. Esta adaptação inclui alterações na composição da membrana, na maquinaria de tradução e transcrição. A resposta ao choque térmico pelo frio induz uma repressão da transcrição. No entanto, a descida de temperatura induz a produção de um grupo de proteínas específicas que ajudam a ajustar/re-ajustar o metabolismo celular às novas condições ambientais. Em E. coli o processo de adaptação demora apenas quatro horas, no qual um grupo de proteínas específicas são induzidas. Depois desde período recomeça lentamente a produção de proteínas.A ribonuclease R, uma das proteínas induzidas durante o choque térmico pelo frio, é uma das principais ribonucleases em E. coli envolvidas na degradação do RNA. É uma exoribonuclease que degrada RNA de cadeia dupla, possui funções importantes na maturação e “turnover” do RNA, libertação de ribossomas e controlo de qualidade de proteínas e RNAs. O nível celular desta enzima aumenta até dez vezes após exposição ao frio e estabiliza em células na fase estacionária. A capacidade de degradar RNA de dupla cadeia é importante a baixas temperaturas quando as estruturas de RNA estão mais estáveis. No entanto, este mecanismo é desconhecido. Embora a resposta específica ao “cold shock” tenha sido descoberta há mais de duas décadas e o número de proteínas envolvidas sugerirem que esta adaptação é rápida e simples, continuamos longe de compreender este processo. No nosso trabalho pretendemos descobrir proteínas que interactuem com a RNase R em condições ambientais diferentes através do método “TAP-tag” e espectrometria de massa. A informação obtida pode ser utilizada para deduzir algumas das novas funções da RNase R durante a adaptação bacteriana ao frio e durante a fase estacionária. Mais importante ainda, RNase R poderá ser recrutada para um complexo de proteínas de elevado peso molecular durante o “cold-shock”.------------ABSTRACT:Microorganisms react to the rapid temperature downshift with a specific adaptative response that ensures their survival in unfavorable conditions. Adaptation includes changes in membrane composition, in translation and transcription machinery. Cold shock response leads to overall repression of translation. However, temperature downshift induces production of a set of specific proteins that help to tune cell metabolism and readjust it to the new environmental conditions. For Escherichia coli the adaptation process takes only about four hours with a relatively small set of specifically induced proteins involved. After this time, protein production resumes, although at a slower rate. One of the cold inducible proteins is RNase R, one of the main E. coli ribonucleases involved in RNA degradation. RNase R is an exoribonuclease that digest double stranded RNA, serves important functions in RNA maturation and turnover, release of stalled ribosomes by trans-translation, and RNA and protein quality control. The level of this enzyme increases about ten-fold after cold induction, and it is also stabilised in cells growing in stationary phase. The RNase R ability to digest structured RNA is important at low temperatures where RNA structures are stabilized but the exact role of this mechanism remains unclear. Although specific bacterial cold shock response was discovered over two decades ago and the number of proteins involved suggests that this adaptation is fast and simple, we are still far from understanding this process. In our work we aimed to discover the proteins interacting with RNase R in different environmental conditions using TAP tag method and mass spectrometry analysis. The information obtained can be used to deduce some of the new functions of RNase R during adaptation of bacteria to cold and in stationary growth phase. Most importantly RNase R can be recruited into a high molecular mass complex of protein in cold shock.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.