104 resultados para Software CAD 3D para vestuário
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil, Ramo de Estruturas
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil - Ramo de Estruturas e Geotecnia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e Computadores
Resumo:
One of today's biggest concerns is the increase of energetic needs, especially in the developed countries. Among various clean energies, wind energy is one of the technologies that assume greater importance on the sustainable development of humanity. Despite wind turbines had been developed and studied over the years, there are phenomena that haven't been yet fully understood. This work studies the soil-structure interaction that occurs on a wind turbine's foundation composed by a group of piles that is under dynamic loads caused by wind. This problem assumes special importance when the foundation is implemented on locations where safety criteria are very demanding, like the case of a foundation mounted on a dike. To the phenomenon of interaction between two piles and the soil between them it's given the name of pile-soil-pile interaction. It is known that such behavior is frequency dependent, and therefore, on this work evaluation of relevant frequencies for the intended analysis is held. During the development of this thesis, two methods were selected in order to assess pile-soil-pile interaction, being one of analytical nature and the other of numerical origin. The analytical solution was recently developed and its called Generalized pile-soil-pile theory, while for the numerical method the commercial nite element software PLAXIS 3D was used. A study of applicability of the numerical method is also done comparing the given solution by the nite element methods with a rigorous solution widely accepted by the majority of the authors.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.
Resumo:
Esta plataforma foi projetada como auxílio complementar ao processo de reabilitação de doentes afásicos lusófonos. Uma gama de exercícios são disponibilizados de forma a induzir diferentes estímulos (compreensão escrita e auditiva e expressão escrita) sendo a grande maioria destes realizados dentro de um ambiente virtual em três dimensões onde o utilizador (dependendo da tarefa) pode interagir com objetos presentes dentro de uma casa. A principal particularidade desta plataforma reside no facto desta estar alojada online, dispensando instalações e permitindo um acompanhamento mais próximo por parte do terapeuta da fala do progresso feito pelo paciente. A ferramenta desenvolvida está disponível para visualização e teste no endereço www.weblisling.net.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Retinal imaging with a confocal scaning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.
Resumo:
In the past years, Software Architecture has attracted increased attention by academia and industry as the unifying concept to structure the design of complex systems. One particular research area deals with the possibility of reconfiguring architectures to adapt the systems they describe to new requirements. Reconfiguration amounts to adding and removing components and connections, and may have to occur without stopping the execution of the system being reconfigured. This work contributes to the formal description of such a process. Taking as a premise that a single formalism hardly ever satisfies all requirements in every situation, we present three approaches, each one with its own assumptions about the systems it can be applied to and with different advantages and disadvantages. Each approach is based on work of other researchers and has the aesthetic concern of changing as little as possible the original formalism, keeping its spirit. The first approach shows how a given reconfiguration can be specified in the same manner as the system it is applied to and in a way to be efficiently executed. The second approach explores the Chemical Abstract Machine, a formalism for rewriting multisets of terms, to describe architectures, computations, and reconfigurations in a uniform way. The last approach uses a UNITY-like parallel programming design language to describe computations, represents architectures by diagrams in the sense of Category Theory, and specifies reconfigurations by graph transformation rules.
Resumo:
The aim of the TeleRisk Project on labour relations and professional risks within the context of teleworking in Portugal – supported by IDICT – Institute for Development and Inspection of Working Conditions (Ministry of Labour), is to study the practices and forms of teleworking in the manufacturing sectors in Portugal. The project chose also the software industry as a reference sector, even though it does not intend to exclude from the study any other sector of activity or the so-called “hybrid” forms of work. However, the latter must have some of the characteristics of telework. The project thus takes into account the so-called “traditional” sectors of activity, namely textile and machinery and metal engineering (machinery and equipment), not usually associated to this type of work. However, telework could include, in the so-called “traditional” sectors, other variations that are not found in technologically based sectors. One of the evaluation methods for the dynamics associated to telework consisted in carrying out surveys by means of questionnaires, aimed at employers in the sectors analysed. This paper presents some of the results of those surveys. It is important to mention that, being a preliminary analysis, it means that it does not pretend to have exhausted all the issues in the survey, but has meant that it shows the bigger tendencies, in terms of teleworking practices, of the Portuguese industry.