9 resultados para Segmentation of threedimensional images
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Retinal ultra-wide field of view images (fundus images) provides the visu-alization of a large part of the retina though, artifacts may appear in those images. Eyelashes and eyelids often cover the clinical region of interest and worse, eye-lashes can be mistaken with arteries and/or veins when those images are put through automatic diagnosis or segmentation software creating, in those cases, the appearance of false positives results. Correcting this problem, the first step in the development of qualified auto-matic diseases diagnosis programs can be done and in that way the development of an objective tool to assess diseases eradicating the human error from those processes can also be achieved. In this work the development of a tool that automatically delimitates the clinical region of interest is proposed by retrieving features from the images that will be analyzed by an automatic classifier. This automatic classifier will evaluate the information and will decide which part of the image is of interest and which part contains artifacts. The results were validated by implementing a software in C# language and validated through a statistical analysis. From those results it was confirmed that the methodology presented is capable of detecting artifacts and selecting the clin-ical region of interest in fundus images of the retina.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
In cataract surgery, the eye’s natural lens is removed because it has gone opaque and doesn’t allow clear vision any longer. To maintain the eye’s optical power, a new artificial lens must be inserted. Called Intraocular Lens (IOL), it needs to be modelled in order to have the correct refractive power to substitute the natural lens. Calculating the refractive power of this substitution lens requires precise anterior eye chamber measurements. An interferometry equipment, the AC Master from Zeiss Meditec, AG, was in use for half a year to perform these measurements. A Low Coherence Interferometry (LCI) measurement beam is aligned with the eye’s optical axis, for precise measurements of anterior eye chamber distances. The eye follows a fixation target in order to make the visual axis align with the optical axis. Performance problems occurred, however, at this step. Therefore, there was a necessity to develop a new procedure that ensures better alignment between the eye’s visual and optical axes, allowing a more user friendly and versatile procedure, and eventually automatizing the whole process. With this instrument, the alignment between the eye’s optical and visual axes is detected when Purkinje reflections I and III are overlapped, as the eye follows a fixation target. In this project, image analysis is used to detect these Purkinje reflections’ positions, eventually automatically detecting when they overlap. Automatic detection of the third Purkinje reflection of an eye following a fixation target is possible with some restrictions. Each pair of detected third Purkinje reflections is used in automatically calculating an acceptable starting position for the fixation target, required for precise measurements of anterior eye chamber distances.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A study about the physical appearance of pre-photographic, photomechanical, photographic and digital positive reflective prints was made, relating the obtained images with the history, materials and technology used to create them. The studied samples are from the Image Permanence Institute (IPI) study collection. The digital images were obtained using a digital SLR on a copystand and a compound light microscope, with different lighting angles (0º, 45ºand 90º) and magnifications from overall views on the copystand down to a 20x objective lens on the microscope. Most of these images were originally created by IPI for www.digitalsamplebook.org, a web tool for teaching print identification, and will be used on the www.graphicsatlas.org website, along with textual information on identification, technology and history information about these reproduction processes.
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Geológica (Georrecursos)