35 resultados para Seafloor massive sulfide
Resumo:
Dissertation presented to obtain the PhD degree in Biology/Molecular Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica
Resumo:
J. Am. Chem. Soc., 2003, 125 (51), pp 15708–15709 DOI: 10.1021/ja038344n
Resumo:
According to an ancient folkloric legend, Our Lady, stepping down from the sea, would have rided on a mule to the platform above the cliffs named Pedra da Mua at Lagosteiros'bay, near Espichel cape. Mule's footprints, regarded by fishermen as evidence, would be clearly recognizable on exposed surfaces of the rocks. Indeed there are footprints but from Dinosaurs of latest Jurassic, Portlandian age, this spectacular locality being specially rich in giant Sauropod tracks (that have seldom been found elsewhere in Europe). As we proceeded to its study, another locality with Dinosaur footprints, Lower Cretaceous (Hauterivian) in age, was found on the northern cliffs at Lagosteiros. It is probably the richest one in european Lower Cretaceous and the only of this age known in Portugal, so we decided to give priority to its study. Dinosaur tracks have been printed on calciclastic sands in a lagoonal environment protected by fringing coral reefs. There have been emersion episodes; beaches were frequented by Dinosaurs. Later on, the marine barremian ingression restablished a gulf and such animals could not come here any more. Under a paleogeographical viewpoint, the evidence of a marine regression near the end of Hauterivian is to be remarked. Five types of tracks and footprints have been recognized: - Neosauropus lagosteirensis, new morphogenus and species, tracks from a giant Sauropod, perhaps from Camarasaurus; with its proportions the total length of the author would be about 15,5 m. These are the only Sauropod tracks known till now in Europe's Lower Cretaceous. - tracks from a not so big quadruped, maybe a Sauropod (young individual?); however it is not impossible that they were produced by Stegosaurians or Ankylosaurians. -Megalosauropus (?Eutynichnium) gomesi new morphospecies, four Theropod tracks most probably produced by megalosaurs. - Iguanodon sp., represented by some footprints and specially by a set corresponding to the feet and tail from an individual standing in a rest position. - problematical, quite small-sized biped (maybe an Ornithopod related to Camptosaurus). Evidence points to a richer fauna than that known in barremian "Dinosaur sandstones" from a nearby locality, Boca do Chapim. Lagosteiros' association clearly indicates the predominance of herbivores, which required large amounts of vegetable food in the neighbourhood. This is an indirect evidence of the vegetal wealth, also suggested by associations of plant macrofossils, polen and spores found in early Cretaceous sediments at the same region. The relatively high proportion of Theropoda is related to the wealth of the whole fauna, which comprised a lot of the prey needed by such powerful flesh-eaters. The evidence, as a whole, points out to a warm and moist climate. All the tracks whose direction could be measured are directed to the southern quadrants, this being confirmed by the approximative direction of other footprints. Massive displacements (migration?) could take place during a brief emersion episode. This may result from the ingression of barremian seas, flooding the region and restablishing here a small gulf. Even if the arrival of the waters damaged certain footprints it has not destroyed them completely, thus allowing the preservation of such evidence from a remote past.
Resumo:
Algarve Province, Southern Portugal, corresponds in part to a meso-cenozoic basin running along the coast from Cabo S. Vicente to beyond Spanish border. Structurally it is a big monocline plunging southwards much deformed mainly by two East-West longitudinal flexures. Lithostratigraphical and chronostratigraphical studies dealt specially with Jurassic formations. This and the geological mapping of the post-Hercynian sedimentary formations allow us to define the following units: Triassic-Lower Liassic Arenitos de Silves (Silves sandstones sensu P. Choffat, pro parte) - At their base the Silves sandstones (0-150m) are represented mainly by cross-bedded red sandstones. This unit is Upper Triassic (Keuper) in age, on the evidence of some Brachiopoda. Complexo margo-carbonatado de Silves (Silves marl-limestone complex=Silves sandstones sensu P. Choffat, pro parte) (80-200m) overlies the preceding, it may be reported to the Upper Triassic-Hettangian. It consists of a thick pelite-marl-dolomite-limestone series with many intercalations of greenstones. Since no fossils were found it is not possible to conclude whether it is still Hettangian or if it does correspond, in the whole or in part, already to the Sinemurian. Liassic Dolomitos e calcários dolomíticos de Espiche (Espiche dolomite-rocks and dolomitic-limestones) - The usually massive and finely crystalline or saccharoidal dolomites and dolomitic-limestones are the toughest strata of the Algarve margin giving rise to several hills. Its thickness attains in certain points 60 metres at least. Based on geometry and on lithological similarities with the carbonated complex of the northern basin of Tagus river (Peniche, São Pedro de Muel, Quiaios), this formation can be accepted as Sinemurian in age. As it happens with the carbonated complex, here also the first dolomite beds are non-isochronal throughout the region; upper time-limit of the dolomitic facies is either Lower Carixian, Lower Toarcian or even Lower Dogger. The dolomitization is secondary but not much later than sedimentation. However, between Cabo S. Vicente-Vila do Bispo there is evidence of an even later secondary dolomitization related to the regional fault complex. Calcário dolomítico com nódulos de silex da praia de Belixe (Belixe beach dolomitic-limestone with silex nodules) (50-55m) - Ascribed to Lower or Middle Carixian on the basis of Platypleuroceras sp., Metaderoceras sp. nov. and M. gr. Venarense. Calcário cristalino compacto com Protogrammoceras, Fuciniceras e ? Argutarpites de Belixe (Belixe compact crystalline limestone with Protogrammoceras, Fuciniceras and ? Argutarpites) (30m) - Ascribed to Lower Domerian. Middle and Upper Domerian are indicated but by a single specimen of ? Argutarpites. Calcários margosos e margas com Dactylioceras semicelatum e Harpoceratídeos de Armação Nova (Armação Nova marly limestones and marls with D. semicelatum and Harpoceratidae) (25m) -Ascribed to Lower Toarcian. Middle and Upper Toarcian formations are not known in the Algarve. Dogger Calcários oolíticos, c. corálicos, c. pisolíticos, c. calciclásticos, c. dolomíticos e dolomitos de Almadena (Almadena oolitic-limestones, coral-reef-limestones, pisolite-limestones, limeclastic-limestones, dolomitic-limestones and dolomite-rocks) (more than 50 metres), with lagoonal facies. Ascribed to Aalenian-Bathonian-? Callovian. Margas acinzentadas e calcários detríticos com Zoophycos da praia de Mareta (Mareta beach greyish marls and detritical limestones with Zoophycos) (40m) - Pelagic transreef facies with Upper Bajocian and Bathonian ammonites. Calcários margosos e margas da praia de Mareta (Mareta beach pelagic marly-limestones and marls) (110m) - Ascribed to the Callovian on its ammonites. Malm Near Cabo S. Vicente and Sagres the first Upper Jurassic level consists of a yellowish-brown nodular, compact, locally phosphated and ferruginous, sometimes conglomeratic, marly limestone (0,35-1,50m) containing a rich macrofauna, which includes: 1) Callovian forms unknown at Lower Oxfordian; 2) Upper Callovian forms that still survived in Lower and Middle Oxfordian; 3) Lower Oxfordian forms (Mariae and Cordatum Zones); 4) Lower and Middle Oxfordian forms (Mariae to Plicatilis Zone); 5) Middle Oxfordian forms (plicatilis Zone), and some ones appearing in Middle Oxfordian. This condensed deposit is therefore dated from Middle Oxfordian (Plicatilis Zone). The other Upper Jurassic lithostratigraphical units were also mapped but their detailed study is not presented in this work. Correlations between lithostratigraphical and chronostratigraphical scales from P. Choffat, J. Pratsch, C. Palain and from the author are stated. Further correlations are attempted between zonc scales of Carixian-Lower Toarcian and Upper Bajocian-Middle Oxfordian of France, Spain (Asturias, Iberian and Betic Chains), Argel (Orania) and Portugal (northern Tagus basin and Algarve). The study of pyritous fossil assemblages common in Upper Bathonian-Lower Callovian marly levels of the praia da Mareta seems to suggest that these sediments were deposited in a bay or in an almost closed coastal re-entrance virtually without deep water circulation. Although such conditions may occur at any depth one may suppose that these ones actually correspond to an infralittoral neritic environment. The thaphocoenosis collected there are almost entirely composed of nektonic (ammonites, Belemnites) and planktonic (Bositra) faunas. The sedentary (crinoids, brachiopods) or free (sea-urchins, gastropods) epibenthonic forms are very scarce; endobenthonic forms are not known. The palaeontological study of all Nautiloids and Ammonoids of the Liassic and Dogger is presented (except Kosmoceratidae and Perisphinctaceae). Among the thirty one taxa dealt with, one is new (Metaderoceras sp. nov.) and the great majority of the others has been identified for the first time in Algarve. Some others have never been reported before in Portuguese formations. The evolution, during Jurassic times, of the sedimentary basins of the Portuguese plate margin is described. The absence of Cephalopods in the very extensive marly and dolomitic limestones, partly marine, suggests that, during Lower Liassic, palaeogeography underwent no great changes. Dolomitic-limestone with silex nodules from Cabo S. Vicente contain the first ammonites recorded at the base of the Middle Liassic. This facies, although very common in Tethys, is unknown north of the Tagus. The faunal assemblage has a mediterranean to submediterranean character. Comparisons between faunal assemblage" from Algarve with the ones known north of the Tagus show that communications between Boreal Europe and Tethys, virtually non-existent during Lower and Middle Carixian, became very easy during Lower Domerian. In earlier Pliensbachian times two distinct seas were adjacent to the Iberian plate. One, an epicontinental sea with a tethyan fauna, extended southwards from the Meseta margin. Another, was a boreal sea; during its transgressive episodes boreal faunas attained into the basin north of the Tagus. During Middle Carixian and Lower Domerian, owing to simultaneous transgressions, these two seas joined together allowing faunal exchanges along the epicontinental areas which limited the emerging hercynian chains belts. During Liassic, the Algarve belonged undoubtedly to the tethyan submediterranean province. The area north of the Tagus, on the contrary, was a complex realm where subboreal and tethyan affinities alternatively prevailed. In the Algarve the first Middle Jurassic deposits do frequently show lateral thickness reductions as well as unconformities contemporaneous with other generalized disturbances on the sedimentation processes in other parts of Europe. By this time, near Sagres, a barrier reef developed separating lagoonal or ante-reef facies from the transreef pelagic zone. The presence of tethyan fauna, the abundance of Phylloceratidae and the absence of boreal forms allow us to consider the Algarve basin as a submediterranean province. The presence of Callovian pelagic fossiliferous formations in the Loulé area shows that during Middle Jurassic the marl-limestone transreef sedimentation was not confined to the western Algarve. They would extend eastwards where they only can be seen in the core of some anticlines. This is due to the progressive sinking of the meso-cenozoic formations as we proceed towards the South of the Sagres-Algoz-Querença flexure. In the whole of the Peninsule, and as for the Middle Callovian, an important regression can be clearly recognized on the evidence of an erosion surface which strikes obliquely the Middle and Upper Callovian strata. The geographic boundaries of the different faunal provinces are not changed by the presence of many Kosmoceratidae in the phosphate nodules since they are but a minority in comparison with the tethyan forms. An abstract model can be constructed showing that in Western Europe the Kosmoceratidae may have migrated South and westwards through a channel of the sea that linked Paris basin to Poitou and Aquitaine. By migrating between the Iberian meseta and the Armorican massif this fauna reached northern Tagus basin at the beginning of Upper Callovian (Athleta Zone); this south and southwest bound migration would have proceeded, allowing such forms to reach Algarve basin only in latest Callovian times (Lamberti Zone). This migration means that during Middle Jurassic a widely spread North Atlantic sea would exist, flooding the western part of Portugal up to the Poitou.
Resumo:
The Middle Liassic outcrops of the Coimbra region (Portugal) show, at Carixian-Domerian boundary, an unusual high frequence of the Falsopalmula, morphogenus,that is generally well represented in the Lower Toarcian. The study of the Nodosaridea association shows that the massive presence of this morphogenus excludes the Lenticulina s. st. genus. These faunistic particularities should be ascribed to the environment and to the sedimentation pattern. The development of the Falsopalmula morphogenus should have been simultaneous to that of the pelitic sedimentation.
Resumo:
New elements about the stratigraphy of the Serra de Candeeiros Dogger and Lower «Lusitanian» are presented. The Lower Aalenian was recognized for the first time. Bathonian (more than 50 metres thick) is dated on brachiopods and foraminifera. It corresponds to a series of massive micritic, biodetritical, coral-reef, chaetetid, bryozoa and oolitic-limestones. Callovian (120 m) begins by whitish or yellowish limestones with ammonites and brachiopods of the Gracilis zone. It is followed by regressive limestone sequences ending with thick oncolitic layers. The «Lusitanian» base is formed by greyish lagoon brackish limestones; it lies unconformably on the Dogger, with or without angular and/or cartographic unconformity. This radical facies change is related to tectonic deformation of several blocks between the Nazaré and Tagus faults during Oxfordian times.
Resumo:
In Portugal, Carixian is generally represented by alternative layers of marly limestones characterized by nodule and lumpy levels. These layers are particularly developped [show preferential development] on passage areas to a sedimentary basin, particularly along the slope of tilted blocks between the Meseta and Berlenga's horst. This facies is included in the range of the «nodular limestone» and of the «ammonitico-rosso». Limestones are radiolaria micrites with fragments of pelagic organisms (ammonoids, thin shelled gastropods). These layers can be affected by intensive bioturbation (Brenha) which is responsible for dismantlement, specially where the initial thickness does not exceed a few centimetres. This process can lead to the isolation of residual nodules (Brenha, São Pedro de Muel, Peniche) which can be mobilised by massive sliding (Peniche). The isolated elements, shell fragments or residual nodules, can also be incrustated, thus developing oncolitic cryptalgal structures. At Brenha the lump structure developed progressively into a sequence overlapping the normal sedimentary one (thick limestone beds alternating with bituminous shales). Cryptalgal structures correspond to rather unstable environment conditions on mobile margins. These structures are known in deep pelagic sediments corresponding to well defined events of the geodynamic evolution (end of the initial rifting). Cryptalgal accretions disappear towards the sedimentary basin, and the nodular levels are less important. In the articulation areas with the Tomar platform, small mounds and cupules (Alcabideque) developed within the alternating marly-limestone levels. They represent the so called «mud mounds» of metric dimensions. The upper part of these «mud mounds» is hardened, showing track remains and supporting some brachiopods and pectinids. Hence the lumpy facies of Portugal is included among the range of sedimentaty environments and can be used as «geodynamic tracer».
Resumo:
The WORKS Project started two years ago (2005), involving the efforts of research institutes of 13 European countries with the main purpose of improving the understanding of the major changes in work in the knowledge-based society, taking account both of global forces and the regional diversity within Europe. This research meeting in Sofia (Bulgaria) aimed to present synthetically the massive amount of data collected in the case studies (occupational and organisational) and with the quantitative research during last year.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
FEMS Yeast Research, Vol. 9, nº 4
Resumo:
Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The Moncorvo Ordovician ironstones in northeastern Portugal consist of iron ore sedimentary horizons frequently interbanded with psamites and quartzites. Ore reserves may probably exceed 1 000 million tonnes and this makes Moncorvo the largest iron ore deposit in the European Union. Compact poorly banded massive layers may exceed 90 meters in thickness which is quite an extraordinary feature for a Phanerozoic deposit. If the thickness of Precambrian deposits may reach a few hundred meters, the thickness of Phanerozoic deposits never exceed a maximum of 15 meters generally forming a number of comparatively thin layers confined to a particular member of a sedimentary sequence. A detailed microscopic analysis of the ores revealed that initially a compact magnetite/quartzite layer, detrital in character (the magnetite occasionally showing chromite cores), was deposited by entrapment in near shore lagoons where rivers debouched, rather than in the open sea. This stage was followed by oscilating and transgressive shore lines which gave rise to breaks in sedimentation in combined river delta and shallow water marine environment where detrital material and fine iron oxide and clay suspensions were deposited in fluctuating environments. These events gave rise to layers of both magnetite (martite) and specularite intergrown with quartz, silicates and phosphates. Textural and mineralogical studies show that the deposits consist of ferruginous clastic sediments and are not chemically deposited cherts. Field, geological and palaeontological evidence also supports a detrital origin, the facies being typical of zones rich in oxygen and close to the feeding continent. The uncommon huge development of Moncorvo was due to the fact that the deposits occur in restricted basins on a continental platform were clastic sediments were predominantly deposited. Not only morphologically but also chemically the deposits are more similar to Precambrian iron formations than to Phanerozoic ironstones.
Resumo:
In the aim of the project "Recognition of the Miocene of the distal region of the Lower Tagus Basin through a borehole with continuous sampling", Temperature, Natural Gamma Ray, Neutron (almost in all the borehole), Sonic, SP and SPR (in two small sections in upper and lower parts of the Miocene Series) geophysical logs were carried on. Interpretation of those logs and comparison with chronological, lithostratigraphical, micropaleontological and clay mineraIs data; helped in the definition of depositional sequences and to obtain paleoenvironmental reconstructions that could lead to a better understanding of the evolution of the Setúbal Península and Lisboa regions Miocene gulf. Log data agree with the lithologic succession observed in the Belverde borehole, essentially silty sandstones/sandy siltstones (with variable clay content) to clays, often with marly intercalations. Sonic logs (and Neutron logs, in general) reflect the sediments porosity. The higher acoustic velocities are often related to compact/massive layers as claystones and/or limestones and rather fossiliferous marly layers. Lower values are obtained for porous, silty sandstones (fossiliferous and with scarce clay content) and bio-calcareous sandstones. As indicative, we obtained the mean values of 2500-3000m/s for the higher velocities and 1300-1600m/s for the lowest ones. ln Natural Gamma Ray log, the radiation peaks can be correlated to often fossiliferous marly micaceous layers. Radioactive micas are present. It seems that the gamma peaks and the depositional sequences previously defined for the Lower Tagus Basin (see Antunes et al., 1999, 2000; Pais et al., 2002) can be correlated, taking also into account the whole available micropaleontological, palynological and isotopic evidence.