3 resultados para Rotational stocking
Resumo:
Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.
Resumo:
With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.
Resumo:
This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.