2 resultados para Rain forest area
Resumo:
One of the major factors threatening chimpanzees (Pan troglodytes verus) in Guinea-Bissau is habitat fragmentation. Such fragmentation may cause changes in symbiont dynamics resulting in increased susceptibility to infection, changes in host specificity and virulence. We monitored gastrointestinal symbiotic fauna of three chimpanzee subpopulations living within Cantanhez National Park (CNP) in Guinea Bissau in the areas with different levels of anthropogenic fragmentation. Using standard coproscopical methods (merthiolate-iodine formalin concentration and Sheather's flotation) we examined 102 fecal samples and identified at least 13 different symbiotic genera (Troglodytella abrassarti, Troglocorys cava, Blastocystis spp., Entamoeba spp., Iodamoeba butschlii, Giardia intestinalis, Chilomastix mesnili, Bertiella sp., Probstmayria gombensis, unidentified strongylids, Strongyloides stercoralis, Strongyloides fuelleborni, and Trichuris sp.). The symbiotic fauna of the CNP chimpanzees is comparable to that reported for other wild chimpanzee populations, although CNP chimpanzees have a higher prevalence of Trichuris sp. Symbiont richness was higher in chimpanzee subpopulations living in fragmented forests compared to the community inhabiting continuous forest area. We reported significantly higher prevalence of G. intestinalis in chimpanzees from fragmented areas, which could be attributed to increased contact with humans and livestock.
Resumo:
The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.