6 resultados para RN black hole
Resumo:
Erasmus Mundus Masters “Crossways in European Humanities” June 2011
Resumo:
In this paper, the determinants of growth of aggregate health expenditures are investigated. The study departs from previous literature in that it looks at differences across countries in growth (and not levels) of health care expenditures. Estimation is made for 24 OECD countries. Health system characteristics usually believed to influence health expenditures growth, like population ageing, the type of health system (public reimbursement, public contract or integrate) and existence of gatekeepers, are found to be non-significant. Nevertheless, there is evidence that health expenditures experienced a clear slower growth in the last decade. The explanation for this slowdown could not be found in the proposed model and should stimulate further research.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
During drilling operation, cuttings are produced downhole and must be removed to avoid issues which can lead to Non Productive Time (NPT). Most of stuck pipe and then Bottom-Hole Assembly (BHA) lost events are hole cleaned related. There are many parameters which help determine hole cleaning conditions, but a proper selection of the key parameters will facilitate monitoring hole cleaning conditions and interventions. The aim of Hole Cleaning Monitoring is to keep track of borehole conditions including hole cleaning efficiency and wellbore stability issues during drilling operations. Adequate hole cleaning is the one of the main concerns in the underbalanced drilling operations especially for directional and horizontal wells. This dissertation addresses some hole cleaning fundamentals which will act as the basis for recommendation practice during drilling operations. Understand how parameters such as Flowrate, Rotation per Minute (RPM), Rate of Penetration (ROP) and Mud Weight are useful to improve the hole cleaning performance and how Equivalent Circulate Density (ECD), Torque & Drag (T&D) and Cuttings Volumes coming from downhole help to indicate how clean and stable the well is. For case study, hole cleaning performance or cuttings volume removal monitoring, will be based on real-time measurements of the cuttings volume removal from downhole at certain time, taking into account Flowrate, RPM, ROP and Drilling fluid or Mud properties, and then will be plotted and compared to the volume being drilled expected. ECD monitoring will dictate hole stability conditions and T&D and Cuttings Volume coming from downhole monitoring will dictate how clean the well is. T&D Modeling Software provide theoretical calculated T&D trends which will be plotted and compared to the real-time measurements. It will use the measured hookloads to perform a back-calculation of friction factors along the wellbore.
Resumo:
In this work we are going to evaluate the different assumptions used in the Black- Scholes-Merton pricing model, namely log-normality of returns, continuous interest rates, inexistence of dividends and transaction costs, and the consequences of using them to hedge different options in real markets, where they often fail to verify. We are going to conduct a series of tests in simulated underlying price series, where alternatively each assumption will be violated and every option delta hedging profit and loss analysed. Ultimately we will monitor how the aggressiveness of an option payoff causes its hedging to be more vulnerable to profit and loss variations, caused by the referred assumptions.
Resumo:
The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.