15 resultados para Pulse Amplitude Modulation
Resumo:
The use, manipulation and application of electrical currents, as a controlled interference mechanism in the human body system, is currently a strong source of motivation to researchers in areas such as clinical, sports, neuroscience, amongst others. In electrical stimulation (ES), the current applied to tissue is traditionally controlled concerning stimulation amplitude, frequency and pulse-width. The main drawbacks of the transcutaneous ES are the rapid fatigue induction and the high discomfort induced by the non-selective activation of nervous fibers. There are, however, electrophysiological parameters whose response, like the response to different stimulation waveforms, polarity or a personalized charge control, is still unknown. The study of the following questions is of great importance: What is the physiological effect of the electric pulse parametrization concerning charge, waveform and polarity? Does the effect change with the clinical condition of the subjects? The parametrization influence on muscle recruitment can retard fatigue onset? Can parametrization enable fiber selectivity, optimizing the motor fibers recruitment rather than the nervous fibers, reducing contraction discomfort? Current hardware solutions lack flexibility at the level of stimulation control and physiological response assessment. To answer these questions, a miniaturized, portable and wireless controlled device with ES functions and full integration with a generic biosignals acquisition platform has been created. Hardware was also developed to provide complete freedom for controlling the applied current with respect to the waveform, polarity, frequency, amplitude, pulse-width and duration. The impact of the methodologies developed is successfully applied and evaluated in the contexts of fundamental electrophysiology, psycho-motor rehabilitation and neuromuscular disorders diagnosis. This PhD project was carried out in the Physics Department of Faculty of Sciences and Technology (FCT-UNL), in straight collaboration with PLUX - Wireless Biosignals S.A. company and co-funded by the Foundation for Science and Technology.
Resumo:
SignalProcessing, Vol. 81, nº 3
Resumo:
Modern telecommunication equipment requires components that operate in many different frequency bands and support multiple communication standards, to cope with the growing demand for higher data rate. Also, a growing number of standards are adopting the use of spectrum efficient digital modulations, such as quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM). These modulation schemes require accurate quadrature oscillators, which makes the quadrature oscillator a key block in modern radio frequency (RF) transceivers. The wide tuning range characteristics of inductorless quadrature oscillators make them natural candidates, despite their higher phase noise, in comparison with LC-oscillators. This thesis presents a detailed study of inductorless sinusoidal quadrature oscillators. Three quadrature oscillators are investigated: the active coupling RC-oscillator, the novel capacitive coupling RCoscillator, and the two-integrator oscillator. The thesis includes a detailed analysis of the Van der Pol oscillator (VDPO). This is used as a base model oscillator for the analysis of the coupled oscillators. Hence, the three oscillators are approximated by the VDPO. From the nonlinear Van der Pol equations, the oscillators’ key parameters are obtained. It is analysed first the case without component mismatches and then the case with mismatches. The research is focused on determining the impact of the components’ mismatches on the oscillator key parameters: frequency, amplitude-, and quadrature-errors. Furthermore, the minimization of the errors by adjusting the circuit parameters is addressed. A novel quadrature RC-oscillator using capacitive coupling is proposed. The advantages of using the capacitive coupling are that it is noiseless, requires a small area, and has low power dissipation. The equations of the oscillation amplitude, frequency, quadrature-error, and amplitude mismatch are derived. The theoretical results are confirmed by simulation and by measurement of two prototypes fabricated in 130 nm standard complementary metal-oxide-semiconductor (CMOS) technology. The measurements reveal that the power increase due to the coupling is marginal, leading to a figure-of-merit of -154.8 dBc/Hz. These results are consistent with the noiseless feature of this coupling and are comparable to those of the best state-of-the-art RC-oscillators, in the GHz range, but with the lowest power consumption (about 9 mW). The results for the three oscillators show that the amplitude- and the quadrature-errors are proportional to the component mismatches and inversely proportional to the coupling strength. Thus, increasing the coupling strength decreases both the amplitude- and quadrature-errors. With proper coupling strength, a quadrature error below 1° and amplitude imbalance below 1% are obtained. Furthermore, the simulations show that increasing the coupling strength reduces the phase noise. Hence, there is no trade-off between phase noise and quadrature error. In the twointegrator oscillator study, it was found that the quadrature error can be eliminated by adjusting the transconductances to compensate the capacitance mismatch. However, to obtain outputs in perfect quadrature one must allow some amplitude error.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2713 – 2716, Seattle, EUA
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
RESUMO: A entorse do tornozelo é uma das lesões músculo-esqueléticas mais comuns. A limitação da amplitude de dorsiflexão tem sido demonstrada como uma das consequências desta lesão, bem como um dos factores contribuintes para a recorrência. Vários estudos têm demonstrado que o membro lesado de indivíduos com história de entorse, apresenta uma falha posicional anterior do peróneo. Um estudo realizado em cadáveres revelou que um deslizamento póstero-superior ao nível da articulação tibioperoneal inferior pode contribuir para aumentar a amplitude de dorsiflexão. Está descrita uma técnica de terapia manual que realiza o deslizamento póstero-superior do maléolo lateral associada ao movimento activo de flexão dorsal (MWM). No entanto, não existe, até à data, nenhum estudo que investigue a efectividade desta MWM em indivíduos com limitação da FD e história de entorse unilateral do tornozelo. Desenho de estudo: Ensaio clínico aleatorizado e controlado por placebo, duplamente cego. Objectivos: Avaliar os efeitos imediatos da MWM na articulação tibio-peroneal inferior na amplitude de flexão dorsal e no deslizamento posterior do astrágalo em indivíduos com história de entorse unilateral do tornozelo e limitação da flexão dorsal. O protocolo experimental foi aplicado uma única vez e os seus efeitos comparados com uma intervenção placebo. Metodologia: Uma amostra de 30 indivíduos com história de entorse unilateral e limitação da amplitude de flexão dorsal foi aleatoriamente distribuído por dois grupos: grupo MWM e grupo placebo. Foram avaliados o deslizamento posterior do astrágalo e a avaliação da amplitude de flexão dorsal em carga. As avaliações foram realizadas imediatamente antes e após a intervenção. Resultados: Não foram encontradas diferenças significativas entre os grupos na avaliação inicial (baseline). A realização da one-way ANCOVA revelou que, imediatamente após a intervenção, se verificou um aumento na amplitude de flexão dorsal no grupo MWM (aumento de 1.37 cm (DP, 0.97) significativamente superior ao grupo placebo (diminuição de 0.15cm (DP, 0.63) (P<.001). O deslizamento posterior do astrágalo aumentou 1.51º (DP, 1.77) no grupo MWM, no entanto este aumento não foi significativamente superior ao aumento de 0.76º (DP, 1.26) do grupo placebo (P=.113). Conclusão: Os resultados sugerem que a MWM na articulação tibioperoneal inferior produziram um efeito significativo na amplitude de flexão dorsal embora o mesmo não se tenha verificado no deslizamento posterior do astrágalo. Estes resultados fornecem evidência preliminar para a efectividade da MWM como intervenção em indivíduos com história de entorse unilateral e limitação da amplitude de flexão dorsal.---------------ABSTRACT:Background: Ankle sprains are one of the most common musculo-skeletal injuries. Impaired dorsiflexion range of motion has been shown to be one of the consequences of this injury, as well as one of the contributing factors to recurrence. Several studies have shown the presence of an anterior positional fault of the fibula in injuried ankles. A cadaveric study revealed that a posterosuperior glide of the distal tibiofibular may contribute to improve dorsiflexion. There is a manual therapy technique which provides a posterosuperior glide of the lateral malleolus combined with dorsiflexion active movement (MWM). However, there was no study, until now, that investigated the effectiveness of this MWM in individuals with impaired dorsiflexion and history of unilateral ankle sprain. Design: Double-blind randomized placebo controlled trial. Objectives: To determine the immediate effects of a distal tibiofibular MWM in ankle dorsiflexion and talar posterior glide in patients with history of unilateral ankle sprain and limitation of dorsiflexion. The treatment technique was used as a single treatment against a placebo group. Methods: A sample of 30 subjects with a history of unilateral ankle sprain and limitation of dorsiflexion were randomized into two groups: distal tibiofibular MWM or a placebo group. The outcome measures used in this study were the posterior talar glide and weight-bearing (WB) ankle dorsiflexion range of motion. The measures were taken before and immediately after the intervention. Results: No significant differences were found in baseline measures between groups. A one-way ANCOVA revealed that, immediately after the intervention, there was an improvement in ankle dorsiflexion in the MWM group (increase of 1.37 cm (SD, 0.97) significantly superior to the placebo group (decrease of 0.15cm (SD, 0.63) (P<.001). Posterior talar glide increased by 1.51º (SD, 1.77) for the MWM group, which was more than 0.76º (SD, 1.25) for the placebo intervention although there wasn’t a significant difference between groups (P=.113). Conclusion: This investigation’s findings suggest that an inferior tibio-fibular MWM produced a significant effect on WB dorsiflexion range of motion and posterior talar glide. These results provide preliminary evidence for the efficacy of mobilisations with movement in the management of individuals with history of unilateral ankle sprain and limitation of dorsiflexion.
Resumo:
RESUMO: A cefaleia cervicogénica é uma forma comum de dor de cabeça, que tem sido associada à existência de uma disfunção das estruturas da coluna cervical superior. Estudos recentes mostram uma grande incidência dessa disfunção a nível de C1-C2, avaliada pelo teste de flexão-rotação. Vários terapeutas manuais, como Brian Mulligan e Mariano Rocabado, têm sido sugerido técnicas de tratamento para este tipo de disfunção. Contudo, a evidência acerca da efectividade dessas técnicas é escassa. Desenho do estudo: Foi efectuado um ensaio clínico aleatório, duplamente cego, composto por três fases: pré-intervenção, intervenção e pós-intervenção. Objectivos: Avaliar e comparar os efeitos imediatos de duas técnicas de Terapia Manual Ortopédica (SNAG C1/2 de Mulligan e técnica de desrotação do atlas de Rocabado), na amplitude de movimento de rotação do segmento vertebral C1-C2, em indivíduos com história de cefaleia cervicogénica e com limitação no teste de flexão-rotação. As técnicas de tratamento foram usadas de forma isolada, em comparação a um grupo placebo. Métodos: Uma amostra de 60 indivíduos, com cefaleia cervicogénica e limitação do teste de flexão-rotação, foram aleatoriamente distribuídos por três grupos: SNAG C1/2 de Mulligan, técnica de desrotação do atlas de Rocabado e grupo placebo. O outcome primário foi a amplitude de movimento obtida no teste de flexão-rotação, que foi medido antes e imediatamente após a intervenção. Resultados: Imediatamente após a intervenção, a amplitude verificada no teste de flexão-rotação aumentou 21.8º (DP, 4.68) no grupo submetido ao SNAG C1/2 de Mulligan, 15º (DP, 5.07) no grupo em que foi aplicada a técnica de desrotação do atlas de Rocabado e 0.65º (DP, 0.67) no grupo placebo. Uma ANOVA modelo misto, 2 por 3, revelou efeito principal significativo do tempo (p<.001) e grupo (p<.001), assim como uma interacção significativa entre grupo e tempo (p<.001), relativamente à variável amplitude do teste de flexão-rotação. Estes resultados indicam que as diferenças verificadas entre os grupos eram dependentes do momento de avaliação. Uma comparação múltipla post hoc revelou que quer as técnicas de Mulligan, quer de Rocabado, produziram efeitos significativamente maiores que a intervenção placebo na amplitude de movimento do teste de flexão-rotação (p<.001 e p=.001, respectivamente). No entanto,não se verificou uma diferença significativa no que diz respeito à efectividade de ambas as técnicas de Terapia Manual Ortopédica aplicadas (p=.42). Conclusão: Esta investigação sugere que as duas técnicas de Terapia Manual Ortopédica avaliadas produziram efeito clínica e estatisticamente significativo na amplitude do teste de flexão-rotação. No entanto, não se verificaram diferenças entre as duas técnicas, no que diz respeito ao seu efeito no ganho de amplitude de movimento. Os resultados obtidos fornecem evidência preliminar sobre a efectividade de ambas as intervenções no tratamento da redução de amplitude de movimento em indivíduos com história de cefaleia cervicogénica.-------------------------------ABSTRACT:Background: Cervicogenic headache is a common form of headache arising from dysfunction in structures of the upper cervical spine. Recent studies have shown a high incidence of C1/2 dysfunction, evaluated by the flexion-rotation test (FRT). Several manual therapists have suggested different approaches to manage that dysfunction, such as Brian Mulligan and Mariano Rocabado. However, the evidence of the effectiveness of those manual techniques is anedoctal. Design: Randomized double blinded controlled trial with three phases: pre-intervention, intervention and post-intervention. Objectives: To determine and compare the immediate effects of two manual therapy techniques (Mulligan’s SNAG C1/2 and Rocabado’s atlas’ derotation technique) in the range of motion of C1-C2 vertebral segments, in cervicogenic headache patients and with limitation on the flexion-rotatoin test. The treatment techniques were used as single treatments against a placebo group. Methods: A sample of 60 subjects with cervicogenic headache and FRT limitation were randomly allocated into one of three groups: Mulligan’s C1/2 SNAG, Rocabado’s atlas derotation technique or placebo group. The primary outcome was the flexion rotation test range, which was measured before and immediately after the intervention. Results: Immediately after the application of the interventions, FRT range increased by 21.8º (SD, 4.68) for the Mulligan’s C1-2 SNAG group, 15º (SD, 5.07) for the Rocabado’s atlas derotation technique and 0.65º (SD, 0.67) for the placebo group. A 2-by-3 mixedmodel ANOVA a significant main effect of time (p<.001) and group (p<.001), as well as a significant interaction between group and time (p<.001) for the variable FRT range. These results indicate that group differences were dependent on time. A pairwise post hoc comparison revelad that both the Mulligan and Rocabado techniques produced significantly more effect on FRT range of motion than the placebo intervention (p<.001 and p=.001, respectively). However, there was not a significant difference between the effectiveness of the two manual therapy techniques (p=.42).Conclusion: This investigation’s findings suggest that both Mulligan’s C1/2 SNAG and Rocabado’s atlas derotation techniques produced a clinically and statistically significant effect on FRT range, but there were no changes between the two techniques in their effectiveness. These results provide preliminary evidence for the efficacy of both manual therapy techniques in the management of individuals with cervicogenic headache and FRT limitation.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
J Biol Inorg Chem (2006) 11: 307–315 DOI 10.1007/s00775-005-0077-2
Resumo:
Dissertation to obtain the Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP scan technique on healthy subjects. A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current intensity step. The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse,respectively, being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulusresponse curve slope.
Resumo:
A transimpedance amplifier (TIA) is used, in radiation detectors like the positron emission tomography(PET), to transform the current pulse produced by a photo-sensitive device into an output voltage pulse with a desired amplitude and shape. The TIA must have the lowest noise possible to maximize the output. To achieve a low noise, a circuit topology is proposed where an auxiliary path is added to the feedback TIA input, In this auxiliary path a differential transconductance block is used to transform the node voltage in to a current, this current is then converted to a voltage pulse by a second feedback TIA complementary to the first one, with the same amplitude but 180º out of phase with the first feedback TIA. With this circuit the input signal of the TIA appears differential at the output, this is used to try an reduced the circuit noise. The circuit is tested with two different devices, the Avalanche photodiodes (APD) and the Silicon photomultiplier (SIPMs). From the simulations we find that when using s SIPM with Rx=20kΩ and Cx=50fF the signal to noise ratio is increased from 59 when using only one feedback TIA to 68.3 when we use an auxiliary path in conjunction with the feedback TIA. This values where achieved with a total power consumption of 4.82mv. While the signal to noise ratio in the case of the SIPM is increased with some penalty in power consumption.
Resumo:
The work presented in this thesis aims at developing a new separation process based on the application of supported magnetic ionic liquid membranes, SMILMs, using magnetic ionic liquids, MILs. MILs have attracted growing interest due to their ability to change their physicochemical characteristics when exposed to variable magnetic field conditions. The magnetic responsive behavior of MILs is thus expected to contribute for the development of more efficient separation processes, such as supported liquid membranes, where MILs may be used as a selective carrier. Driven by the MILs behavior, these membranes are expected to switch reversibly their permeability and selectivity by in situ and non-invasive adjustment of the conditions (e.g. intensity, direction vector and uniformity) of an external applied magnetic field. The development of these magnetic responsive membrane processes were anticipated by studies, performed along the first stage of this PhD work, aiming at getting a deep knowledge on the influence of magnetic field on MILs properties. The influence of the magnetic field on the molecular dynamics and structural rearrangement of MILs ionic network was assessed through a 1H-NMR technique. Through the 1H-NMR relaxometry analysis it was possible to estimate the self-diffusion profiles of two different model MILs, [Aliquat][FeCl4] and [P66614][FeCl4]. A comparative analysis was established between the behavior of magnetic and non-magnetic ionic liquids, MILs and ILs, to facilitate the perception of the magnetic field impact on MILs properties. In contrast to ILs, MILs show a specific relaxation mechanism, characterized by the magnetic dependence of their self-diffusion coefficients. MILs self-diffusion coefficients increased in the presence of magnetic field whereas ILs self-diffusion was not affected. In order to understand the reasons underlying the magnetic dependence of MILs self-diffusion, studies were performed to investigate the influence of the magnetic field on MILs’ viscosity. It was observed that the MIL´s viscosity decreases with the increase of the magnetic field, explaining the increase of MILs self-diffusion according to the modified Stokes- Einstein equation. Different gas and liquid transport studies were therefore performed aiming to determine the influence of the magnetic behavior of MILs on solute transport through SMILMs. Gas permeation studies were performed using pure CO2 andN2 gas streams and air, using a series of phosphonium cation based MILs, containing different paramagnetic anions. Transport studies were conducted in the presence and absence of magnetic field at a maximum intensity of 1.5T. The results revealed that gas permeability increased in the presence of the magnetic field, however, without affecting the membrane selectivity. The increase of gas permeability through SMILMs was related to the decrease of the MILs viscosity under magnetic field conditions.(...)