9 resultados para Plum Island salt marsh
Resumo:
The Upper Jurassic evolution of the Lusitanian Basin is shown to be linked to the rifting phase which preceded the separation of Iberia and the Grand Banks. Structural controls on sedimentation include both NNE-SSW trending faults in the Hercynian basement, and contemporaneous movement of salt diapirs. At the beginning of Upper Oxfordian times, the entire basin had been levelled to within a few metres of sea level, so that the freshwater algal marsh and marginal marine facies of the Cabaços and Vale Verde Beds rest on Triassic to Callovian strata. In the latter part of the Upper Oxfordian. carbonate sedimentation continued, with fluctuating salinity lagoons in the north (Pholodomya protei Beds) separated from shallow open marine carbonates in the south (Montejunto Beds) by the Caldas da Rainha diapir-barrier island complex. The commencement of rifting is recorded in the Kimmeridgian by the sudden influx of terrigenous clastics (developed in both fluviatile and deltaic/submarine fan environments) and accelerated depositional rates in excess of 10cm/10 k.yrs in association with contemporaneous faulting along the SE margin of the Arruda sub-basin. The Caldas-Santa Cruz chain of diapiric structures continued to influence the distribution of carbonate and clastic sediments. In the Portlandian, a simpler facies pattern occurs, with fluviatile clastics interfingering to the south with shallow low energy carbonates.
Resumo:
pp. 119-160
Resumo:
Clin Sci (Lond). 2002 Nov;103(5):475-85
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Restoration of Buildings and Monuments, vol.11, nº 2 (2005), p.105-110
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Climate change is emerging as one of the major threats to natural communities of the world’s ecosystems; and biodiversity hotspots, such as Madeira Island, might face a challenging future in the conservation of endangered land snails’ species. With this thesis, progresses have been made in order to properly understand the impact of climate on these vulnerable taxa; and species distribution models coupled with GIS and climate change scenarios have become crucial to understand the relations between species distribution and environmental conditions, identifying threats and determining biodiversity vulnerability. With the use of MaxEnt, important changes in the species suitable areas were obtained. Laurel forest species, highly dependent on precipitation and relative humidity, may face major losses on their future suitable areas, leading to the possible extinction of several endangered species, such as Leiostyla heterodon. Despite the complexity of the biological systems, the intrinsic uncertainty of species distribution models and the lack of information about land snails’ functional traits, this analysis contributed to a pioneer study on the impacts of climate change on endemic species of Madeira Island. The future inclusion of predictions of the effect of climate change on species distribution as part of IUCN assessments could contribute to species prioritizing, promoting specific management actions and maximizing conservation investment.
Resumo:
World population is increasing at an alarming rate while food productivity is decreasing due to the effect of various abiotic stresses. Soil salinity is one of the most important abiotic stress and a limiting factor for worldwide plant production. In addition to its important effects on yield, salt stress affects numerous cellular activities, including cell wall composition, photosynthesis, protein synthesis, ions and organic solutes. Up to 20% of the irrigated arable land in arid and semiarid regions is already salt affected and is still expanding. Improving salt tolerant varieties is of major importance, and efforts should be focused on finding adaptive mechanisms which are involved in salinity tolerance. In this study, several spelt wheat (Triticum aestivum var. Spelta) genotypes and one cultivar of modern bread wheat were used to screen them for salt tolerance. Spelt is an old-European cereal crop currently attracting renewed interest as a food grain because it is said to be harder than wheat and requires less fertilizer. Spelt wheat is also becoming very attractive genetic source by plant breeders due to its wide adaptation ability to various stressful conditions such as soil salinity. In this study morphological parameters (e.g., leaf appearance; shoot elongation), dry matter production, mineral nutrients (especially Na and K), and activity of antioxidative enzymes were measured to select superior genotypes of spelt for salt tolerance. The results showed that Spelt genotype Sp41 is a salt sensitive genotype and genotypes Sp69, Sp96 and Sp912 are good candidates for salt tolerant genotypes.
Resumo:
Programmes supporting micro and small enterprises in developing countries have been showing that capital is not enough to allow business success: survival and growth. Literature does not provide comprehensive and practical tool to support business development in this context, but allowed the collection of forty-nine success variables that were studied in a sample of successful and unsuccessful businesses in the Island of Mozambique to discover what were the key factors affecting those businesses’ performance. Empirical data gave the insights for the development of a model to screen and improve business potential of micro and small enterprises in this context.