5 resultados para Plasmacytoid dendritic cell
Resumo:
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I(-/-) and ST6Gal.I(-/-) mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I(-/-) and ST6Gal.I(-/-) strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading.
Resumo:
Cancer remains as one of the top killing diseases in first world countries. It’s not a single, but a set of various diseases for which different treatment approaches have been taken over the years. Cancer immunotherapy comes as a “new” breath on cancer treatment, taking use of the patients’ immune system to induce anti-cancer responses. Dendritic Cell (DC) vaccines use the extraordinary capacity of DCs’ antigen presentation so that specific T cell responses may be generated against cancer. In this work, we report the ex vivo generation of DCs from precursors isolated from clinical-grade cryopreserved umbilical cord blood (UCB) samples. After the thawing protocol for cryopreserved samples was optimized, the generation of DCs from CD14+ monocytes, i.e., moDCs, or CD34+ hematopoietic stem cells (HSCs), i.e, CD34-derived DCs, was followed and their phenotype and function evaluated. Functional testing included the ability to respond to maturation stimuli (including enzymatic removal of surface sialic acids), Ovalbumin-FITC endocytic capacity, cytokine secretion and T cell priming ability. In order to evaluate the feasibility of using DCs derived from UCB precursors to induce immune responses, they were compared to peripheral blood (PB) moDCs. We observed an increased endocytosis capacity after moDCs were differentiated from monocyte precursors, but almost 10-fold lower than that of PB moDCs. Maturation markers were absent, low levels of inflammatory cytokines were seen and T cell stimulatory capacity was reduced. Sialidase enzymatic treatment was able to mature these cells, diminishing endocytosis and promoting higher T cell stimulation. CD34-derived DCs showed higher capacity for both maturation and endocytic capacity than moDCs. Although much more information was acquired from moDCs than from CD34-derived DCs, we conclude the last as probably the best suited for generating an immune response against cancer, but of course much more research has to be performed.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
RESUMO: As células dendríticas (DCs) têm a capacidade única de induzir respostas imunitárias contra as células tumorais, fagocitando antigénios tumorais e apresentando-os às células T, provocando respostas imunitárias específicas que conduzem à eliminação de células de tumorais. Por induzirem memória imunológica de longa duração, as DCs são uma estratégia atrativa para o tratamento e/ou prevenção do cancro. No entanto, os resultados terapêuticos obtidos em ensaios clínicos com DCs são escassos e pouco eficientes. O nosso grupo demonstrou que ácidos siálicos que contêm glicanos desempenham um papel funcional importante em DCs geradas ex vivo. Com o objetivo de estabelecer um modelo in vitro para avaliar a resposta anti-tumoral específica realizou-se um tratamento enzimático a DCs derivadas de monócitos (moDCs) com sialidase, enzima que cliva ácidos siálicos na superfície celular. O perfil de maturação de moDCs foi caracterizado por citometria de fluxo e expressão de citocinas. Os resultados mostram que a sialidase pode regular positivamente a expressão de moléculas co-estimuladoras na superfície de moDCs estimuladas com agonistas de Toll like receptors (TLRs). Para percebermos se o tratamento com sialidase afeta a sinalização dos TLRs foram usadas células HEK transfectadas de forma estável com TLRs 2, 4 and 7/8. Os dados mostraram que a desialilação não afeta a sinalização através estes recetores. Para investigar o impacto funcional da sialidase na capacidade de moDCs em apresentar um antigénio e ativar células T, moDCs foram tratadas, ou não, com sialidase e cultivadas com clones de células T CD8+ específicas para os péptidos derivados do antigénio tumoral gp100. Os resultados mostram que DCs HLA*02:01+ desialiladas exibem maior cross-presentation do péptido gp100280-288 às células T CD8+ específicas. Além disso o tratamento com sialidase também aumenta a capacidade de DCs de induzir a proliferação de células T CD4+. Em conjunto, os resultados indicam que moDCs com menos ácidos siálicos na superfície, têm melhor potencial imuno-estimulador, com maior capacidade de induzir respostas imunes anti-tumorais.--------------------- ABSTRACT: Dendritic cells (DCs) have a unique capacity to induce immune responses against tumor cells. They can phagocyte tumor antigens, maturate and present them to T cells, triggering antigen-specific immune responses that may lead to the elimination of tumor cells. Since they induce long-lasting immunological memory, DCs become an attractive strategy as cellular targets for vaccines in the treatment and/or prevention of cancer. However, the therapeutic results obtained in clinical trials with DCs are scarce and only few patients effectively respond to the DC vaccines. Our group has shown that sialic acid containing glycans play an important functional role in ex vivo generated DC. Here we aimed to establish an in vitro model to assess specific antitumor responses. To achieve this, an enzymatic treatment of monocyte-derived DCs (moDCs) was performed using sialidase to cleave surface sialic acids. The maturation profile of the moDCs was characterized by flow cytometry and cytokine expression. The results show that sialidase treatment can upregulate co-stimulatory molecules on surface of moDCs stimulated with Toll like receptor (TLR) agonists. To understand whether sialidase treatment affected the TLR signaling, we have used HEK cells stably transfected with TLRs 2, 4 and 7/8. The data showed that desialylation of moDCs does not affect the signaling via these receptors. To investigate the functional impact of sialidase treatment in the capacity of moDCs to present antigen and to activate antigen specific T cells, sialidase treated and untreated moDCs were co-cultured with CD8+ T cell clones specific for peptides derived from the gp100 tumor antigen. Our results show that desialylated HLA02:01+ DCs are superior in cross-presentation of the peptide to gp100280–288 specific CD8+ T cells. In addition, sialidase treatment also increased the DC capacity to induce CD4+ T cells proliferation. Together, these data indicate that moDCs with altered cell surface sialic acids, through a sialidase treatment, have a better immunostimulatory potential which could improve anti-tumor immune responses.
Resumo:
The immune system comprises of different cell types whose role is to protect us against pathogens. This thesis investigates a very important mechanism for our organism protection in a specific disorder: cross-presentation in Wiskott-Aldrich Syndrome (WAS). WAS is caused by loss-of-function mutations in the cytoskeletal regulator WASp and WAS patients suffer from eczema, thrombocytopenia, and immunodeficiency. X-linked neutropenia (XLN) is caused by gain-of-function mutations in WASp and XLN patients suffer from severe congenital neutropenia and immunodeficiency. This thesis was focused on the role of B and T lymphocytes and dendritic cells (DCs). This work will be divided into two main topics: 1) In the first part I studied the capacity of B cells to take up, degrade and present antigen. Moreover I studied the capacity of B cells to induce T cell proliferation. 2) In the second part, I studied T cell proliferation induced by dendritic cells. To increase our understanding about this mechanism, additional experiments were performed, including acidification capacity of CD8+ and CD8- DCs, reactive oxygen species (ROS) production since it is directly connected to acidification. These assays were measured by flow cytometry. Localization of Rac1 and Rac2 GTPases was assessed by confocal microscopy. Proliferation, acidification and ROS production assays were performed also with cells from X-linked neutropenia (XLN) mice. From this study we concluded that B cells cannot induce CD8+ T cell proliferation however they take up and present antigen. Moreover I have shown that increased cross-presentation by WASp KO DCs with ovalbumin is associated with decreased capacity to acidify endosomal compartment; and WASp KO CD8- DCs have increased Rac2 localization to the phagosome. XLN dendritic cells have similar acidification and ROS production capacity than wildtype cells. In conclusion, our data suggests that WASp regulates antigen processing and presentation in DCs.