11 resultados para Phytopathogenic microorganisms
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology.
Resumo:
Dissertation presented in partial fulfillment of the requirements for the degree of Master in Biotechnology
Resumo:
Dissertation presented to obtain a Ph.D. degree in Biochemistry by Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa.
Resumo:
J Biol Inorg Chem (2011) 16:1241–1254 DOI 10.1007/s00775-011-0812-9
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
In recent years, new methods of clean and environmentally friendly energy production have been the focus of intense research efforts. Microbial fuel cells (MFCs) are devices that utilize naturally occurring microorganisms that feed on organic matter, like waste water, while producing electrical energy. The natural habitats of bacteria thriving in microbial fuel cells are usually marine and freshwater sediments. These microorganisms are called dissimilatory metal reducing bacteria (DMRB), but in addition to metals like iron and manganese, they can use organic compounds like DMSO or TMAO, radionuclides and electrodes as terminal electron acceptors in their metabolic pathways.(...)
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Resumo:
Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.
Resumo:
Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.
Resumo:
Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.