8 resultados para Phase Change Material
Resumo:
A ready-mixed and several laboratory formulated mortars were produced and tested in fresh state and after hardening, simulating a masonry plaster for indoor application. All the mortars used a clayish earth from the same region and different compositions of aggregates, eventually including fibres and a phase change material. All the formulated mortars were composed by 1:3 volumetric proportions of earth and aggregate. Tests were developed for consistency, fresh bulk density, thermal conductivity, capillary absorption and drying, water vapour permeability and sorption-desorption. The use of PCM changed drastically the workability of the mortars and increased their capillary absorption. The use of fibres and variations on particle size distribution of the mixtures of sand that were used had no significant influence on tested properties. But particularly the good workability of these mortars and the high capacity of sorption and desorption was highlighted. With this capacity plasters made with these mortars are able to adsorb water vapour from indoor atmosphere when high levels of relative humidity exist and release water vapour when the indoor atmosphere became too dry. This fact makes them able to contribute passively for a healthier indoor environment. The technical, ecological and environmental advantages of the application of plasters with this type of mortars are emphasized, with the aim of contributing for an increased use for new or existent housing.
Resumo:
Dissertation to obtain the Doctoral degree in Physics Engineering
Resumo:
A União Europeia tem dado cada vez mais enfoque à eficiência energética nos edifícios e à sua capacidade de produção de energia, tendo lançado a directiva “Energy Performance of Buildings Directive” com o intuito de que até 31 de Dezembro de 2018 todos os edifícios novos sejam “nZEB-nearly Zero Energy Building”, o que significa que devem por um lado diminuir o seu consumo energético, aumentando a sua eficiência, e por outro lado produzir localmente e através de fontes de energias renováveis toda, ou quase toda, a energia de que necessitam. A presente tese está integrada no Projecto “Frame – Prefabricated systems (modules) for low-energy buildings: design, prototyping and testing” (Ref: PTDC/AURAQI-AQI/117782/2010) que está a ser desenvolvido na Unidade de Eficiência Energética do Laboratório Nacional de Energia e Geologia (LNEG). Neste trabalho é desenvolvido e analisado um sistema BIPV/T-PCM (Building Integrated Photovoltaic Thermal – Phase Change Materials) que engloba todo um novo conceito de captação, armazenamento e gestão da energia solar em fachadas. Este sistema é composto por um módulo fotovoltaico, uma bateria de PCM (Materiais de Mudança de Fase) e todo um sistema de fluxo de ar que permite a gestão da energia colectada e armazenada. Foi também desenvolvido teoricamente um código de gestão energética para a manipulação do sistema. O sistema em estudo apoia-se em três objectivos principais: aquecer no inverno; arrefecer no verão; e aumentar a eficiência do PV arrefecendo-o. Na sequência do trabalho realizado verificou-se que o conceito do sistema em estudo alcança alguns dos objectivos propostos, tendo ainda potencial para se continuar o seu desenvolvimento. O sistema em estudo é um sistema inovador, e como tal está a ser registada uma patente com base no conceito desenvolvido.
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Ciências do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Gestão de Sistemas Ambientais
Resumo:
Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.