13 resultados para Parallel version
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
I relate hours worked with taxes on consumption and labor. I propose a model and compare its predictions for Portugal, France, Spain, United Kingdom and United States. Hours per worker in Portugal decreased from 35.1 in 1986 to 32.6 in 2001. With only the parameters and the taxes for Portugal, the model predicts the hours worked in 2001 with an error of only 12 minutes from the actual hours. Across countries, most predictions differ from the data by one hour or less. The model is able to explain the trend in hours with only the changes in taxes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.
Resumo:
Phosphatase and tensin homologue (PTEN) protein belongs to the family of protein tyrosine phos-phatase. Mutations on the phosphatase and tensin homologue (PTEN) protein are highly observed in diverse types of human tumors, being mostly identified on the phosphatase domain of the protein. Although PTEN is a modular protein composed by a phosphatase domain and a C2 domain for mem-brane anchoring, this work aimed at developing a minimal version of PTEN´s phosphatase domain. The minimal version (Small Domain) comprises a 28 residue peptide, with the PTEN 8-mer catalytic peptide accommodated between a α-helix and β-turn as observed in PTEN native structure. Firstly, a de novo prediction of the Small Domain´s secondary structure was carried out by molecular modeling tools. The stability of the predicted structures were then evaluated by Molecular Dynamics. Automated molecular docking of PTEN natural substrate PIP3, its analogue (Inositol) and a PTEN inhibitor (L-tar-tare) were performed with the modeled structure, and PTEN used as a positive control. The gene en-coding for Small Domain was designed and cloned into an expression vector at N-terminal of Green Fluorescence Protein (GFP) encoding gene. The fusion protein was then expressed in Escherichia coli cells. Different expression conditions have been explored for the production of the fusion protein to minimize the formation of inclusion bodies.