5 resultados para PROTEIN-C INHIBITOR
Resumo:
The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.
Resumo:
Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.
Resumo:
Biochemistry, 2004, 43 (46), pp 14566–14576 DOI: 10.1021/bi0485833
Resumo:
Biochemistry, 2003, 42 (10), pp 3070–3080 DOI: 10.1021/bi026979d
Resumo:
ABSTRACT:C-reactive protein (CRP) has been widely used in the early risk assessment of patients with acute pancreatitis (AP), but unclear aspects about its prognostic accuracy in this setting persist. This project evaluated first CRP prognostic accuracy for severity, pancreatic necrosis (PNec), and in-hospital mortality (IM) in AP in terms of the best timing for CRP measurement and the optimal CRP cutoff points. Secondly it was evaluated the CRP measured at approximately 24 hours after hospital admission (CRP24) prognostic accuracy for IM in AP individually and in a combined model with a recent developed tool for the early risk assessment of patients with AP, the Bedside Index for Severity in AP (BISAP). Two single-centre retrospective cohort studies were held. The first study included 379 patients and the second study included 134 patients. Statistical methods such as the Hosmer-Lemeshow goodness-of-fit test, the area under the receiver-operating characteristic curve, the net reclassification improvement, and the integrated discrimination improvement were used. It was found that CRP measured at approximately 48 hours after hospital admission (CRP48) had a prognostic accuracy for severity, PNec, and IM in AP better than CRP measured at any other timing. It was observed that the optimal CRP48 cutoff points for severity, PNec, and IM in AP varied from 170mg/l to 190mg/l, values greater than the one most often recommended in the literature – 150mg/l. It was found that CRP24 had a good prognostic accuracy for IM in AP and that the cutoff point of 60mg/l had a negative predictive value of 100%. Finally it was observed that the prognostic accuracy of a combined model including BISAP and CRP24 for IM in AP could perform better than the BISAP alone model. These results might have a direct impact on the early risk assessment of patients with AP in the daily clinical practice.--------- RESUMO: A proteina c-reactiva (CRP) tem sido largamente usada na avaliação precoce do risco em doentes com pancreatite aguda (AP), mas aspectos duvidosos acerca do seu valor prognóstico neste contexto persistem. Este projecto avaliou primeiro o valor prognóstico da CRP para a gravidade, a necrose pancreática (PNec) e a mortalidade intra-hospitalar (IM) na AP em termos do melhor momento para efectuar a sua medição e dos seus pontos-de-corte óptimos. Em segundo lugar foi avaliado o valor prognóstico da proteína c-reactiva medida aproximadamente às 24 horas após a admissão hospitalar (CRP24) para a IM na AP isoladamente e num modelo combinado, que incluiu uma ferramenta de avaliação precoce do risco em doentes com AP recentemente desenvolvida, o Bedside Index for Severity in Acute Pancreatitis (BISAP). Dois estudos unicêntricos de coorte retrospectivo foram realizados. O primeiro estudo incluiu 379 doentes e o segundo estudo incluiu 134 doentes. Metodologias estatísticas como o teste de Hosmer-Lemeshow goodness-of-fit, a area under the receiver-operating characteristic curve, o net reclassification improvement e o integrated discrimination improvement foram usadas. Verificou-se que a CRP medida às 48 horas após a admissão hospitalar (CRP48) teve um valor prognóstico para a gravidade, a PNec e a IM na AP melhor do que a CRP medida em qualquer outro momento. Observou-se que os pontos de corte óptimos da CRP48 para a gravidade, a PNec e a IM na AP variaram entre 170mg/l e 190mg/l, valores acima do valor mais frequentemente recomendado na literatura – 150mg/l. Verificou-se que a CRP medida aproximadamente às 24 horas após a admissão hospitalar (CRP24) teve um bom valor prognóstico para a IM na AP e que o ponto de corte 60mg/l teve um valor preditivo negativo de 100%. Finalmente observou-se que o valor prognóstico de um modelo combinado incluindo o BISAP e a CRP24 para a IM na AP pode ter um desempenho melhor do que o do BISAP isoladamente. Estes resultados podem ter um impacto directo na avaliação precoce do risco em doentes com AP na prática clínica diária.