47 resultados para PROCESSING TECHNIQUE
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Post-processing a finite element solution is a well-known technique, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Postprocessing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. Consequently such an approach can be exceptionally good in modelling of resin infiltration under quasi steady-state assumption by remeshing techniques and with explicit time integration, because only the free-front normal velocities are necessary to advance the resin front to the next position. The new contribution is the post-processing analysis and implementation of the freeboundary velocities of mesolevel infiltration analysis. Such implementation ensures better accuracy on even coarser meshes, which in consequence reduces the computational time also by the possibility of employing larger time steps.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Retinal imaging with a confocal scaning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.
Resumo:
Electronics Letters Vol.38, nº 19
Resumo:
Nonlinear Dynamics, Vol. 29
Resumo:
In Proceedings of the “ECCTD '01 - European Conference on Circuit Theory and Design, Espoo, Finland, August 2001
Resumo:
Proceedings of the European Control Conference, ECC’01, Porto, Portugal, September 2001
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUA
Resumo:
Reliable flow simulation software is inevitable to determine an optimal injection strategy in Liquid Composite Molding processes. Several methodologies can be implemented into standard software in order to reduce CPU time. Post-processing techniques might be one of them. Post-processing a finite element solution is a well-known procedure, which consists in a recalculation of the originally obtained quantities such that the rate of convergence increases without the need for expensive remeshing techniques. Post-processing is especially effective in problems where better accuracy is required for derivatives of nodal variables in regions where Dirichlet essential boundary condition is imposed strongly. In previous works influence of smoothness of non-homogeneous Dirichlet condition, imposed on smooth front was examined. However, usually quite a non-smooth boundary is obtained at each time step of the infiltration process due to discretization. Then direct application of post-processing techniques does not improve final results as expected. The new contribution of this paper lies in improvement of the standard methodology. Improved results clearly show that the recalculated flow front is closer to the ”exact” one, is smoother that the previous one and it improves local disturbances of the “exact” solution.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.
Resumo:
Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Biotechnology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
PLOS ONE, 4(8):ARTe6820
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer Science