15 resultados para Oxygen reduction
Resumo:
J Biol Inorg Chem (2011) 16:443–460 DOI 10.1007/s00775-010-0741-z
Resumo:
Desulfovibrio desulfuricans was the first species of a sulphatereducing bacterium to be isolated, in 1895. Since that time, many questions were raised in the scientific community regarding the metabolic and ecological aspects of these bacteria. At present, there is still a myriad of open questions remaining to be answered to enlarge our knowledge of the metabolic pathways operative in these bacteria that have implications in the sulfur cycle, in biocorrosion, namely in sewers and in oil and gas systems, and in bioremediation of several toxic metals. The work presented in this dissertation aimed at contributing with new insights of enzymes involved in two different metabolic systems on Desulfovibrio species, namely enzymes that play a role in the response to oxidative stress and that are involved in the haem biosynthetic pathway.(...)
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
Thesis for the master degree in Structural and Functional Biochemistry
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Engenharia Biomédica
Resumo:
J Biol Inorg Chem (2010) 15:967–976 DOI 10.1007/s00775-010-0658-6
Resumo:
J. Am. Chem. Soc., 2003, 125 (51), pp 15708–15709 DOI: 10.1021/ja038344n
Resumo:
Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
The main purpose of this Work Project consists in performing a practical Cost-Benefit Analysis from a social perspective of two noise reduction projects in industrial sites that aim at complying with the existing regulation. By doing so, one may expect a more comprehensive view of the benefits and costs of both projects, as well as relevant insight to the way noise exposure regulation must be optimally defined in Portugal and within the EU area.
Resumo:
In order to address and resolve the wastewater contamination problem of the Sines refinery with the main objective of optimizing the quality of this stream and reducing the costs charged to the refinery, a dynamic mass balance was developed nd implemented for ammonia and polar oil and grease (O&G) contamination in the wastewater circuit. The inadequate routing of sour gas from the sour water stripping unit and the kerosene caustic washing unit, were identified respectively as the major source of ammonia and polar substances present in the industrial wastewater effluent. For the O&G content, a predictive model was developed for the kerosene caustic washing unit, following the Projection to Latent Structures (PLS) approach. Comparison between analytical data for ammonia and polar O&G concentrations in refinery wastewater originating from the Dissolved Air Flotation (DAF) effluent and the model predictions of the dynamic mass balance calculations are in a very good agreement and highlights the dominant impact of the identified streams for the wastewater contamination levels. The ammonia contamination problem was solved by rerouting the sour gas through an existing clogged line with ammonia salts due to a non-insulated line section, while for the O&G a dynamic mass balance was implemented as an online tool, which allows for prevision of possible contamination situations and taking the required preventive actions, and can also serve as a basis for establishing relationships between the O&G contamination in the refinery wastewater with the properties of the refined crude oils and the process operating conditions. The PLS model developed could be of great asset in both optimizing the existing and designing new refinery wastewater treatment units or reuse schemes. In order to find a possible treatment solution for the spent caustic problem, an on-site pilot plant experiments for NaOH recovery from the refinery kerosene caustic washing unit effluent using an alkaline-resistant nanofiltration (NF) polymeric membrane were performed in order to evaluate its applicability for treating these highly alkaline and contaminated streams. For a constant operating pressure and temperature and adequate operating conditions, 99.9% of oil and grease rejection and 97.7% of chemical oxygen demand (COD) rejection were observed. No noticeable membrane fouling or flux decrease were registered until a volume concentration factor of 3. These results allow for NF permeate reuse instead of fresh caustic and for significant reduction of the wastewater contamination, which can result in savings of 1.5 M€ per year at the current prices for the largest Portuguese oil refinery. The capital investments needed for implementation of the required NF membrane system are less than 10% of those associated with the traditional wet air oxidation solution of the spent caustic problem. The operating costs are very similar, but can be less than half if reusing the NF concentrate in refinery pH control applications. The payback period was estimated to be 1.1 years. Overall, the pilot plant experimental results obtained and the process economic evaluation data indicate a very competitive solution through the proposed NF treatment process, which represents a highly promising alternative to conventional and existing spent caustic treatment units.
Resumo:
Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.