15 resultados para Optimization analysis
Resumo:
Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering
Resumo:
High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.
Resumo:
Field Lab of Entrepreneurial Innovative Ventures
Resumo:
This thesis provides a complete analysis of the Standard Capital Requirements given by Solvency II for a real insurance portfolio. We analyze the investment portfolio of BPI Vida e Pensões, an insurance company affiliated with a Portuguese bank BPI, both at security, sub-portfolio and asset class levels. By using the Standard Formula from EIOPA, Total SCR amounts to 239M€. This value is mostly explained by Market and Default Risk whereas the former is driven by Spread and Concentration Risks. Following the methodology of Leblanc (2011), we examine the Marginal Contribution of an asset to the SCR which allows for the evaluation of the risks of each security given its characteristics and interactions in the portfolio. The top contributors to the SCR are Corporate Bonds and Term Deposits. By exploring further the composition of the portfolio, our results show that slight changes in allocation of Term and Cash Deposits have severe impacts on the total Concentration and Default Risks, respectively. Also, diversification effects are very relevant by representing savings of 122M€. Finally, Solvency II represents an opportunity for the portfolio optimization. By constructing efficient frontiers, we find that as the target expected return increases, a shift from Term Deposits/ Commercial Papers to Eurozone/Peripheral and finally Equities occurs.
Resumo:
An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.
Resumo:
Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.