8 resultados para Opportunistic infections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is an important opportunistic pathogen that can cause a wide variety of diseases from mild to life-threatening conditions. S. aureus can colonize many parts of the human body but the anterior nares are the primary ecological niche. Its clinical importance is due to its ability to resist almost all classes of antibiotics available together with its large number of virulence factores. MRSA (Methicillin-Resistant S. aureus) strains are particularly important in the hospital settings, being the major cause of nosocomial infections worldwide. MRSA resistance to β-lactam antibiotics involves the acquisition of the exogenous mecA gene, part of the SCCmec cassette. Fast and reliable diagnostic techniques are needed to reduce the mortality and morbidity associated with MRSA infections, through the early identification of MRSA strains. The current identification techniques are time-consuming as they usually involves culturing steps, taking up to five days to determine the antibiotic resistance profile. Several amplification-based techniques have been developed to accelerate the diagnosis. The aim of this project was to develop an even faster methodology that bypasses the DNA amplification step. Gold-nanoprobes were developed and used to detect the presence of mecA gene in S. aureus genome, associated with resistance traits, for colorimetric assays based on non-crosslinking method. Our results showed that the mecA and mecA_V2 gold-nanoprobes were sensitive enough to discriminate the presence of mecA gene in PCR products and genomic DNA (gDNA) samples for target concentrations of 10 ng/μL and 20 ng/μL, respectively. As our main objective was to avoid the amplification step, we concluded that the best strategy for the early identification of MRSA infection relies on colorimetric assays based on non-crosslinking method with gDNA samples that can be extracted directly from blood samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospital-acquired infections (HAIs) delay healing, prolong Hospital stay, and increase both Hospital costs and risk of death. This study aims to estimate the extra length of stay and mortality rate attributable to each of the following HAIs: wound infection (WI); bloodstream infection (BSI); urinary infections (UI); and Hospital-acquired pneumonia (HAP). The study population consisted of patients discharged in CHLC in 2014. Data was collected to identify demographic information, surgical operations, development of HAIs and its outputs. The study used regressions and a matched strategy to compare cases (infected) and controls (uninfected). The matching criteria were: age, sex, week and type of admission, number of admissions, major diagnostic category and type of discharge. When compared to matched controls, cases with HAI had a higher mortality rate and greater length of stay. WI related to hip or knee surgery, increased mortality rate by 27.27% and the length of stay by 74.97 days. WI due to colorectal surgery caused an extra mortality rate of 10.69% and an excess length of stay of 20.23 days. BSI increased Hospital stay by 28.80 days and mortality rate by 32.27%. UI caused an average additional length of stay of 19.66 days and risk of death of 12.85%. HAP resulted in an extra Hospital stay of 25.06 days and mortality rate of 24.71%. This study confirms the results of the previous literature that patients experiencing HAIs incur in an excess of mortality rates and Hospital stay, and, overall, it presents worse results comparing with other countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium avium Complex (MAC) comprises microorganisms that affect a wide range of animals including humans. The most relevant are Mycobacterium avium subspecies hominissuis (Mah) with a high impact on public health affecting mainly immunocompromised individuals and Mycobacterium avium subspecies paratuberculosis (Map) causing paratuberculosis in animals with a high economic impact worldwide. In this work, we characterized 28 human and 67 porcine Mah isolates and evaluated the relationship among them by Multiple-Locus Variable number tandem repeat Analysis (MLVA). We concluded that Mah population presented a high genetic diversity and no correlations were inferred based on geographical origin, host or biological sample. For the first time in Portugal Map strains, from asymptomatic bovine faecal samples were isolated highlighting the need of more reliable and rapid diagnostic methods for Map direct detection. Therefore, we developed an IS900 nested real time PCR with high sensitivity and specificity associated with optimized DNA extraction methodologies for faecal and milk samples. We detected 83% of 155 faecal samples from goats, cattle and sheep, and 26% of 98 milk samples from cattle, positive for Map IS900 nested real time PCR. A novel SNPs (single nucleotide polymorphisms) assay to Map characterization based on a Whole Genome Sequencing analysis was developed to elucidate the genetic relationship between strains. Based on sequential detection of 14 SNPs and on a decision tree we were able to differentiate 14 phylogenetic groups with a higher discriminatory power compared to other typing methods. A pigmented Map strain was isolated and characterized evidencing for the first time to our knowledge the existence of pigmented Type C strains. With this work, we intended to improve the ante mortem direct molecular detection of Map, to conscientiously aware for the existence of Map animal infections widespread in Portugal and to contribute to the improvement of Map and Mah epidemiological studies.