6 resultados para Non-uniform heat intensity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoamerican cultures had a strong tradition of written and pictorial manuscripts, called the codices. In studies already performed it was found the use of Maya Blue, made from a mixture of indigo and a clay called palygorskite, forming an incredibly stable material where the dye is trapped inside the nanotubes of the clay, after heating. However, a bigger challenge lies in the study of the yellows used, for these civilizations might have used this clay-dye mixture to produce their yellow colorants. As a first step, it was possible to provide identification, by non-invasive methods, of two colorants (a flavonoid and a carotenoid). While the flavonoid absorbed between 368-379 nm, the carotenoid would absorb around 455 nm. A temperature study also conducted allowed to set 140ºC as the desirable temperature to heat the samples without degrading them. FT-IR, conventional Raman and SERS allowed us to understand the existence of a reaction between the dyes and the clays (palygorskite and kaolinite), however it is difficult to understand it in a molecular point of view. As a second step, five species of Mexican dyes were selected on the basis of historical sources. The Maya yellow samples were produced adapting the recipe proposed by Reyes-Valerio, supporting the yellow dyes extracted from the dried plants on the clays, with addition of water, and then heated at 140ºC. It was found that the addition of water in palygorskite would increase the pH, hence deprotonating the molecules having a clear negative effect in the color. A second recipe was developed, without the addition of water; however, it was found that the use of water based binders would still alter the color of the samples with palygorskite. In this case, kaolinite without heating yield better results as a Maya yellow hybrid. It was found that the Maya chemistry might not have been the same for all the colors. The Mesoamericans might have found that different dyes could work better to their desires if matched with different clays. It was noticeable that for a clear distinction between flavonoids and carotenoids the reflectance and emission studies suffice, but when clay is added, Raman techniques will perform better. For this reason, conventional Raman and SERS were employed in order to create a database for the Mesoamerican dyestuffs for a future identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of how heat is transported in non-steady-state conditions from a superconducting Rutherford cable to a bath of superfluid helium (He II). The same type of superconducting cable is used in the dipole magnets of the Large Hadron Collider (LHC). The dipole magnets of the LHC are immersed in a bath of He II at 1.9 K. At this temperature helium has an extremely high thermal conductivity. During operation, heat needs to be efficiently extracted from the dipole magnets to keep their superconducting state. The thermal stability of the magnets is crucial for the operation of the LHC, therefore it is necessary to understand how heat is transported from the superconducting cables to the He II bath. In He II the heat transfer can be described by the Landau regime or by the Gorter-Mellink regime, depending on the heat flux. In this thesis both measurements and numerical simulation have been performed to study the heat transfer in the two regimes. A temperature increase of 8 2 mK of the superconducting cables was successfully measured experimentally. A new numerical model that covers the two heat transfer regimes has been developed. The numerical model has been validated by comparison with existing experimental data. A comparison is made between the measurements and the numerical results obtained with the developed model.