6 resultados para Nitric oxide synthesis
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
Biochemistry, 2011, 50 (20), pp 4251–4262 DOI: 10.1021/bi101605p
Resumo:
Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry.
Resumo:
xi RESUMO A acção da insulina no músculo esquelético depende de um reflexo parassimpático hepático que conduz à libertação de uma substância hepática sensibilizadora da insulina, designada por HISS, responsável por cerca de 55% do efeito hipoglicemiante da insulina. A acção da HISS é finamente regulada pelo monóxido de azoto (NO) hepático e pelo estado prandial, aumentando no período pós-prandial imediato e diminuindo progressivamente com as horas de jejum. A secreção da HISS pode ser inibida cirúrgica ou farmacologicamente, quer por desnervação selectiva do plexo anterior hepático, quer por administração de atropina, quer por inibição do sintase do NO (NOS) hepático. O objectivo geral do trabalho apresentado nesta dissertação foi a caracterização da via de transdução de sinal que conduz à libertação da HISS. O modelo utilizado neste estudo foi o rato Wistar. A sensibilidade à insulina foi avaliada através do teste rápido de sensibilidade à insulina (RIST). A primeira hipótese de trabalho testada foi que a sequência de eventos que conduzem à secreção da HISS inicia-se com a activação do sistema parassimpático hepático seguida de activação do NOS hepático com subsequente produção de NO e activação do guanilato ciclase (GC). Observou-se que a administração de um dador de NO reverteu a resistência à insulina induzida, quer por inibição do NOS hepático, quer por antagonismo dos receptores muscarínicos com atropina. Em contraste, a resistência à insulina produzida por inibição do NOS hepático não foi revertida por administração intraportal de acetilcolina (ACh). Constatou-se que a inibição do GC hepático diminuiu a sensibilidade à insulina. Estes resultados sugerem que: a ACh libertada no fígado induz a síntese de NO hepático que conduz à libertação da HISS, que por sua vez é modulada pelo GC hepático. A libertação da HISS em resposta à insulina é regulada pelo estado prandial. Uma vez que os níveis hepáticos de glutationo (GSH) se encontram, tal como a HISS, diminuídos no estado de jejum e aumentados após a ingestão de uma refeição, testou-se a hipótese de que o GSH hepático está envolvido na secreção da HISS. Observou-se que a depleção do GSH hepático induziu resistência à insulina, comparável à obtida após inibição do NOS hepático. Estes resultados suportam a hipótese de que o GSH hepático desempenha um papel crítico na acção periférica da insulina. Considerando que, no estado de jejum, tanto os níveis de GSH hepático como os níveis de NO hepático são baixos, testou-se a hipótese de que a co-administração intraportal de um dador de GSH e de um dador de NO promove um aumento da sensibilidade à insulina no estado de jejum, devido ao restabelecimento do mecanismo da HISS. Observou-se que a administração sequencial de dadores de GSH e de NO no fígado provocou um aumento na sensibilidade à insulina, dependente da dose de dador de GSH administrada. Concluiu-se portanto que ambos, GSH e NO, são essenciais para que o mecanismo da HISS esteja completamente funcional. O GSH e o NO reagem para formar um S-nitrosotiol, o S-nitrosoglutationo (GSNO). Os resultados supra-mencionados conduziram à formulação da hipótese de que a secreção/acção da HISS depende da formação de GSNO. Observou-se que a administração intravenosa de S-nitrosotióis (RSNOs) aumentou a sensibilidade à insulina, em animais submetidos a um período de jejum, ao contrário da administração intraportal destes fármacos, o que RSNOs têm uma acção periférica, mas não hepática, na sensibilidade à insulina. Os resultados obtidos conduziram à reformulação da hipótese da HISS, sugerindo que a ingestão de uma refeição activa os nervos parassimpáticos hepáticos levando à libertação de ACh no fígado que, por sua vez activa o NOS. Simultaneamente, ocorre um aumento dos níveis de GSH hepático que reage com o NO hepático para formar um composto nitrosado, o GSNO. Este composto mimetiza a acção hipoglicemiante da HISS no músculo esquelético. SUMMARY Insulin action at the skeletal muscle depends on a hepatic parasympathetic reflex that promotes the release of a hepatic insulin sensitizing substance (HISS) from the liver, which contributes 55% to total insulin action. HISS action is modulated by hepatic nitric oxide (NO) and also by the prandial status so as to, in the immediate ostprandial state, HISS action is maximal, decreasing with the duration of fasting. HISS secretion may be inhibited by interruption of the hepatic parasympathetic reflex, achieved either by surgical denervation of the liver or by cholinergic blockade with atropine, or by prevention of hepatic NO release, using NO synthase (NOS) antagonists. The main objective of this work was to characterize the signal transduction pathways that lead to HISS secretion by the liver. Wistar rats were used and insulin sensitivity was evaluated using the rapid insulin sensitivity test (RIST). The first hypothesis tested was that the sequence of events that lead to HISS secretion starts with an increase in the hepatic parasympathetic tone, followed by the activation of hepatic NOS and subsequent triggering of guanylate cyclase (GC). We observed that insulin resistance produced either by muscarinic receptor antagonism with atropine or by hepatic NOS inhibition was reversed by the intraportal administration of an NO donor. In contrast, intraportal acetylcholine (ACh) did not restore insulin sensitivity after NOS inhibition. We also observed that GC inhibition lead to a decrease in insulin sensitivity.These results suggest that the release of ACh in the liver activates hepatic NO synthesis in order to allow HISS secretion, through a signaling pathway modulated by GC. HISS release in response to insulin is controlled by the prandial status. The second hypothesis tested was that glutathione (GSH) is involved in HISS secretion since the hepatic levels of GSH are, like HISS action, decreased in the fasted state and increased after ingestion of a meal. We observed that hepatic GSH depletion led to insulin resistance of the same magnitude of that observed after inhibition of hepatic NOS. These results support the hypothesis that hepatic GSH is crucial in peripheral insulin action. Since, in the fasted state, both hepatic GSH and NO levels are low, we tested the hypothesis that intraportal o-administration of a GSH donor and an NO donor enhances insulin sensitivity in fasted Wistar rats, by restoring HISS secretion. We observed that GSH and NO increased insulin sensitivity in a GSH dose-dependent manner. We concluded that HISS secretion requires elevated levels of both GSH and NO in the liver. GSH and NO react to form a S-nitrosothiol, S-nitrosoglutathione (GSNO). The last hypothesis tested in this work was that HISS secretion/ action depends on the formation of GSNO. We observed that intravenous administration of -nitrosothiols (RSNOs) increased insulin sensitivity in animals fasted for 24 h, in contrast with the intraportal administration of the drug. This result suggests that RSNOs enhanced insulin sensitivity through a peripheral, and not hepatic, mechanism. The results obtained led to a restructuring of the HISS hypothesis, suggesting that the ingestion of a meal triggers the hepatic parasympathetic nerves, leading to the release of Ach in the liver, which in turn activates NOS. Simultaneously, hepatic GSH levels increase and react with NO to form a nitrosated compound, GSNO. S-nitrosoglutathione mimics HISS hypoglycaemic action at the skeletal muscle.
Resumo:
Resumo: Os mecanismos que regulam a homeostase da glucose no pós-prandial são distintos dos mecanismos desencadeados em situações de jejum. Desta forma o fígado parece desempenhar um papel fundamental na acção periférica da insulina após a refeição através de um mecanismo que envolve os nervos parassimpáticos hepáticos e o óxido nítrico (NO). Esta dissertação procura evidenciar a importância de ambos na fi siologia de manutenção da glicémia pós-prandial e na fi siopatologia da resistência à insulina. Dos resultados obtidos observou-se que após a administração de uma refeição mista o perfi l glicémico foi distinto em animais com ou sem ablação dos nervos parassimpáticos hepáticos. A desnervação parassimpática hepática aumentou as excursões de glucose imediatamente após a refeição. Estas diferenças nas excursões de glucose dependentes do parassimpático ocorreram devido a uma diminuição da clearance de glucose, sem que fosse afectada a taxa de aparecimento de glucose no sangue, a produção endógena de glucose e secreção de insulina ou péptido-C. Este aumento das excursões de glucose revelou-se ser devida à diminuição da clearance de glucose pós-prandial exclusivamente no músculo-esquelético, coração e o rim. Concluiu-se que o fígado teria uma função endócrina nestes três órgãos. Surgiu assim a hipótese dos S-nitrosotiois (RSNOs) poderem mimetizar essa resposta endócrina. Testou-se o seu efeito in vivo na sensibilidade à insulina. Para níveis baixos de sensibilidade à insulina, como jejum, desnervação no estado pós-prandial e resistência à insulina os RSNOs potenciaram a sensibilidade à insulina para valores semelhantes ao pós-prandial indicando-os como potenciais fármacos no tratamento da resistência à insulina. O NO e seus derivados ganharam assim uma evidência cada vez maior na acção periférica da insulina e portanto fez-se uma caracterização dos seus níveis desde a fi siologia à fi siopatologia. Os resultados obtidos nesta dissertação permitiram correlacionar a sintetase de óxido nítrico (NOS), enzima responsável pela síntese de NO como um possível marcador da resistência à insulina. Os resultados obtidos contribuíram substancialmente para compreender os mecanismos fi siológicos e fi siopatológicos de manutenção da glicémia após a refeição, colocando o fígado como órgão primordial na regulação periférica (extra-hepática) da captação de glucose.-------- ABSTRACT: The mechanisms responsible for the postprandial response are different from the ones in the fasted state. Therefore the liver seems to play a fundamental role in postprandial insulin action through a mechanism that evolves the hepatic parasympathetic nerves (HPN) and nitric oxide (NO). This work focused on the importance of both, HPN and NO, on postprandial glycemic control and on the pathophysiology of insulin resistance. We observed that after administration of a mixed meal the glycemic profi les with or without the parasympathetic nerves were distinct, increasing glucose excursions after ablation of HPN.This increase in glucose excursions was due to a decrease on the rate of glucose disappearance in extra-hepatic tissues. Glucose appearance rate, endogenous glucose production and insulin secretion were not related to this mechanism. The increase on glucose excursions after the ablation of hepatic parasympathetic system was due to a decrease on glucose clearance on extra-hepatic tissues, namely skeletal-muscle, heart and kidney. We concluded that the liver has an endocrine function on those tissues increasing their glucose uptake.This mechanism led to propose the hypothesis that S-nitrosothiols (RSNOs) could mimic this mechanism. Therefore RSNOs effects on insulin sensitivity were tested. For low insulin sensitivity levels, i.e. fasted state, ablation of the HPN or insulin resistance state induced by a high sucrose diet RSNOs increased insulin sensitivity to levels normally observed in the postprandial state. These results indicated these drugs as potential pharmacological tools in the treatment of insulin resistance. NO and their derivates emerged as fundamental parts of insulin action. A characterization of nitric oxide and nitric oxide synthase (NOS), the enzyme responsible for NO synthesis was part of the work performed. We concluded that NO could be used as a biomarker for insulin resistance states. This work contributed for understanding the mechanism underlying postprandial glycemic control indicating the liver as a key organ in the regulation of peripheral (extra-hepatic) insulin action.