11 resultados para Neural artificial network
Resumo:
This paper presents an application of an Artificial Neural Network (ANN) to the prediction of stock market direction in the US. Using a multilayer perceptron neural network and a backpropagation algorithm for the training process, the model aims at learning the hidden patterns in the daily movement of the S&P500 to correctly identify if the market will be in a Trend Following or Mean Reversion behavior. The ANN is able to produce a successful investment strategy which outperforms the buy and hold strategy, but presents instability in its overall results which compromises its practical application in real life investment decisions.
Resumo:
In this thesis, a feed-forward, back-propagating Artificial Neural Network using the gradient descent algorithm is developed to forecast the directional movement of daily returns for WTI, gold and copper futures. Out-of-sample back-test results vary, with some predictive abilities for copper futures but none for either WTI or gold. The best statistically significant hit rate achieved was 57% for copper with an absolute return Sharpe Ratio of 1.25 and a benchmarked Information Ratio of 2.11.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.
Resumo:
O conhecimento do comportamento das barragens de aterro é essencial para garantir o seu funcionamento adequado e para que os objetivos de utilização delineados inicialmente para o respetivo aproveitamento hidráulico possam ser cumpridos. Os fatores de maior relevância num estudo deste tipo de barragens, considerando que apenas estão sob solicitações estáticas, são as pressões de água, registadas em piezómetros, os caudais percolados e os deslocamentos superficiais, geralmente medidos em marcas de nivelamento ou em alvos colocados em peças de centragem forçada. Na presente dissertação pretende-se, com base no conhecimento dos registos dessas medições feitas anteriormente e recorrendo a modelos de inteligência artificial, predizer o valor que se obteria em próximas medições, ajudando assim a decidir qual o melhor procedimento para remediar ou tratar um problema de comportamento relacionado com as variáveis em estudo. Esta dissertação divide-se essencialmente em três partes. Primeiramente, introduzem-se os conceitos relativos à segurança de barragens de aterro, de acordo com o regulamento de segurança adotado em Portugal, dando relevo ao tipo de observação a que são submetidas. Seguidamente, introduz-se o conceito de redes neuronais artificiais e apresenta-se a base de dados, criada com o intuito de uniformizar e melhorar a organização dos valores em estudo das barragens de aterro, que têm sido acompanhadas pelo Laboratório Nacional de Engenharia Civil. Com esta pretende-se facilitar a utilização destes elementos por programas de inteligência artificial. Por último, é feito o enquadramento de um caso de estudo, uma barragem de aterro no Norte de Portugal – barragem de Valtorno-Mourão. Utilizando o Neuroph Studio, os dados relativos à observação desta barragem são aplicados numa rede neuronal artificial, Multi Layer Perceptron Backpropagation Neural Network, permitindo antever comportamentos futuros. Os resultados obtidos são discutidos e perspetivam-se trabalhos para continuar a desenvolver a investigação efetuada.