6 resultados para National Arboretum (U.S.)--Maps.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.