20 resultados para NEURAL RESPONSES
Resumo:
Dissertation presented to obtain the Ph.D degree in Neuroscience Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented to obtain the degree of Doctorate in Biochemistry by Instituto de Tecnologia Química e Biológica of Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry, Neuroscience
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente
Resumo:
Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Computational Biology.
Resumo:
Sociedade Polis Litoral Ria Formosa,Projects Quasus and Project Toxigest financed by PROMAR (2007-2013)
Resumo:
Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.