12 resultados para Multi-objective optimization problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization is a very important field for getting the best possible value for the optimization function. Continuous optimization is optimization over real intervals. There are many global and local search techniques. Global search techniques try to get the global optima of the optimization problem. However, local search techniques are used more since they try to find a local minimal solution within an area of the search space. In Continuous Constraint Satisfaction Problems (CCSP)s, constraints are viewed as relations between variables, and the computations are supported by interval analysis. The continuous constraint programming framework provides branch-and-prune algorithms for covering sets of solutions for the constraints with sets of interval boxes which are the Cartesian product of intervals. These algorithms begin with an initial crude cover of the feasible space (the Cartesian product of the initial variable domains) which is recursively refined by interleaving pruning and branching steps until a stopping criterion is satisfied. In this work, we try to find a convenient way to use the advantages in CCSP branchand- prune with local search of global optimization applied locally over each pruned branch of the CCSP. We apply local search techniques of continuous optimization over the pruned boxes outputted by the CCSP techniques. We mainly use steepest descent technique with different characteristics such as penalty calculation and step length. We implement two main different local search algorithms. We use “Procure”, which is a constraint reasoning and global optimization framework, to implement our techniques, then we produce and introduce our results over a set of benchmarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Logica Computicional

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química Pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

European Journal of Operational Research, nº 73 (1994)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to address and resolve the wastewater contamination problem of the Sines refinery with the main objective of optimizing the quality of this stream and reducing the costs charged to the refinery, a dynamic mass balance was developed nd implemented for ammonia and polar oil and grease (O&G) contamination in the wastewater circuit. The inadequate routing of sour gas from the sour water stripping unit and the kerosene caustic washing unit, were identified respectively as the major source of ammonia and polar substances present in the industrial wastewater effluent. For the O&G content, a predictive model was developed for the kerosene caustic washing unit, following the Projection to Latent Structures (PLS) approach. Comparison between analytical data for ammonia and polar O&G concentrations in refinery wastewater originating from the Dissolved Air Flotation (DAF) effluent and the model predictions of the dynamic mass balance calculations are in a very good agreement and highlights the dominant impact of the identified streams for the wastewater contamination levels. The ammonia contamination problem was solved by rerouting the sour gas through an existing clogged line with ammonia salts due to a non-insulated line section, while for the O&G a dynamic mass balance was implemented as an online tool, which allows for prevision of possible contamination situations and taking the required preventive actions, and can also serve as a basis for establishing relationships between the O&G contamination in the refinery wastewater with the properties of the refined crude oils and the process operating conditions. The PLS model developed could be of great asset in both optimizing the existing and designing new refinery wastewater treatment units or reuse schemes. In order to find a possible treatment solution for the spent caustic problem, an on-site pilot plant experiments for NaOH recovery from the refinery kerosene caustic washing unit effluent using an alkaline-resistant nanofiltration (NF) polymeric membrane were performed in order to evaluate its applicability for treating these highly alkaline and contaminated streams. For a constant operating pressure and temperature and adequate operating conditions, 99.9% of oil and grease rejection and 97.7% of chemical oxygen demand (COD) rejection were observed. No noticeable membrane fouling or flux decrease were registered until a volume concentration factor of 3. These results allow for NF permeate reuse instead of fresh caustic and for significant reduction of the wastewater contamination, which can result in savings of 1.5 M€ per year at the current prices for the largest Portuguese oil refinery. The capital investments needed for implementation of the required NF membrane system are less than 10% of those associated with the traditional wet air oxidation solution of the spent caustic problem. The operating costs are very similar, but can be less than half if reusing the NF concentrate in refinery pH control applications. The payback period was estimated to be 1.1 years. Overall, the pilot plant experimental results obtained and the process economic evaluation data indicate a very competitive solution through the proposed NF treatment process, which represents a highly promising alternative to conventional and existing spent caustic treatment units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática