43 resultados para Mitochondrial Respiratory-chain
Resumo:
Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
J Biol Inorg Chem (2011) 16:1241–1254 DOI 10.1007/s00775-011-0812-9
Resumo:
The bacterium Geobacter sulfurreducens (Gs) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membrane in a process designated as extracellular electron transfer. The Gs genome was fully sequenced and a family composed by five periplasmic triheme cytochromes c7 (designated PpcA-E) was identified. These cytochromes play an important role in the reduction of extracellular acceptors. They contain approximately 70 amino acids, three heme groups with bis-histidinyl axial coordination, and share between 57 and 77% sequence identity. The triheme cytochrome PpcA is highly abundant in Gs and is most likely the reservoir of electrons destined for outer surface. In addition to its role in electron transfer pathways this protein can perform e-/H+ energy transduction, a process that is disrupted when the strictly conserved aromatic residue phenylalanine 15 is replaced by a leucine (PpcAF15L). This Thesis focuses on the expression, purification and characterization of these proteins using Nuclear Magnetic Resonance and ultraviolet-visible spectroscopy. The orientations of the heme axial histidine ring planes and the orientation of the heme magnetic axis were determined for each Gs triheme cytochrome. The comparison of the orientations obtained in solution with the crystal structures available showed significant differences. The results obtained provide the paramagnetic constraints to include in the future refinement of the solution structure in the oxidized state. In this work was also determined the solution structure and the pH-dependent conformational changes of the PpcAF15L allowing infer the structural origin for e-/H+ energy transduction mechanism as shown by PpcA. Finally, the backbone and side chain NH signals of PpcA were used to map interactions between this protein and the putative redox partner 9,10-anthraquinone-2,6-disulfonate (AQDS). In this work a molecular interaction was identified for the first time between PpcA and AQDS, constituting the first step toward the rationalization of the Gs respiratory chain.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry.
Resumo:
N.º4, p.263-267
Resumo:
Rev Port Pneumol. VII(2): 191-208, 2001
Resumo:
Rev Port Pneumol. VII(2): 210-233, 2001
Resumo:
Rev Port Pneumol. VII(2): 234-250, 2001
Resumo:
Rev Port Pneumol. VII(2): 251-263, 2001
Resumo:
A novel two-component enzyme system from Escherichia coli involving a flavorubredoxin (FlRd) and its reductase was studied in terms of spectroscopic, redox, and biochemical properties of its constituents. FlRd contains one FMN and one rubredoxin (Rd) center per monomer. To assess the role of the Rd domain, FlRd and a truncated form lacking the Rd domain (FlRd¢Rd), were characterized. FlRd contains 2.9 ( 0.5 iron atoms/subunit, whereas FlRd¢Rd contains 2.1 ( 0.6 iron atoms/subunit. While for FlRd one iron atom corresponds to the Rd center, the other two irons, also present in FlRd¢Rd, are most probably due to a di-iron site. Redox titrations of FlRd using EPR and visible spectroscopies allowed us to determine that the Rd site has a reduction potential of -140 ( 15 mV, whereas the FMN undergoes reduction via a red-semiquinone, at -140 ( 15 mV (Flox/Flsq) and -180 ( 15 mV (Flsq/Flred), at pH 7.6. The Rd site has the lowest potential ever reported for a Rd center, which may be correlated with specific amino acid substitutions close to both cysteine clusters. The gene adjacent to that encoding FlRd was found to code for an FAD-containing protein, (flavo)rubredoxin reductase (FlRd-reductase), which is capable of mediating electron transfer from NADH to DesulfoVibrio gigas Rd as well as to E. coli FlRd. Furthermore, electron donation was found to proceed through the Rd domain of FlRd as the Rd-truncated protein does not react with FlRd-reductase. In vitro, this pathway links NADH oxidation with dioxygen reduction. The possible function of this chain is discussed considering the presence of FlRd homologues in all known genomes of anaerobes and facultative aerobes.
Resumo:
Aging is a long-standing biological question of tremendous social and cultural importance. Despite this, only in the last 15 years has biology started to make significant progress in understanding the underlying mechanisms that regulate aging. This progress stemmed mainly from the use of model organisms, which allowed the discovery of several genes directly modulating longevity. Interestingly, several of these longevity genes are necessary for normal mitochondrial function, and disruption of their activity delays the aging process. This is somewhat paradoxical, considering the importance of cellular respiration for energy production and viability of eukaryotic organisms. One possible rationalization for this is that by decreasing cellular respiration, reactive oxygen species (ROS) generation is also reduced, and in that way, cellular decay and aging are delayed.(...)
Resumo:
Journal of Algebra, 321 (2009), p. 743–757
Resumo:
Dissertation presented to obtain the PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa