7 resultados para Midcontinent Rift
Resumo:
A evolução da Bacia Lusitaniana, localizada na margem ocidental ibérica, está intimamente associada às primeiras fases de abertura do Atlântico Norte. Perdurou desde o Triásico superior até o Cretácico inferior, mais exactamente até o topo do Aptiano inferior, e desenvolveu-se condicionada por estruturas herdadas do soco varisco. É discutido o papel desempenhado pelas falhas que constituem os seus limites, no que respeita a evolução geométrica e cinemática e a organização dos corpos sedimentares. O mesmo é efectuado relativamente a importantes falhas transversais à bacia. É proposto modelo de evolução da bacia ao longo de quatro episódios de rifting que mostram: i) períodos de simetria (organização em horsts e grabens) e assimetria (organização em half graben) na sua evolução geométrica; ii) diacronismo na fracturação; iii) rotação da direcção de extensão principal; iv) enraizamento no soco varisco das principais falhas da bacia (estilo predominantemente thick skinned). A análise e comparação regional, nomeadamente com a bacia do Algarve, de intervalos temporais representados por importantes hiatos à escala da bacia, próximos da renovação dos episódios de rifting, permitiram concluir sobre a ocorrência de inversões tectónicas precoces (Caloviano-Oxfordiano e Titoniano-Berriasiano). A última, no entanto, teve evolução subsequente diferente da primeira: não se verifica renovação da subsidência, que se discute, e relaciona-se com evento magmático. Embora a Bacia Lusitaniana se encontre numa margem de rift que se considera como não-vulcânica, os três ciclosmagmáticos definidos por vários autores, em especial o segundo (apr. 130 a 110 M.a. ?), desempenhou papel fundamental na mobilização dos evaporitos do Hetangiano, que resultou no intervalo principal de diapirismo na Bacia Lusitaniana. É discutida a forma e o momento em que a bacia aborta definitivamente (Aptiano inferior). São estabelecidas comparações com outras bacias da margem ocidental ibérica e da Terra Nova e proposto modelo de oceanização deste troço do Atlântico Norte, em dois momentos, separados por intervalo de cerca de 10 M.a. e em áreas distintas, separadas pela falha da Nazaré. Esta síntese foi elaborada com base: - na informação dada por um conjunto de trabalhos já publicados (1990-2000), - nos trabalhos de campo efectuados nos últimos anos e cujos resultados não foram ainda publicados, - na reunião de informação proveniente da reinterpretação de elementos de cartografia geológica e de geofísica (sísmica e sondagens) e de outros de bibliografia geral sobre o Mesozóico da margem ocidental ibérica.
Resumo:
The evolution of the Lusitanian Basin, localized on the western Iberian margin, is closely associated with the first opening phases of the North Atlantic. It persisted from the Late Triassic to the Early Cretaceous, more precisely until the end of the Early Aptian, and its evolution was conditioned by inherited structures from the variscan basement. The part played by the faults that establish its boundaries, as regards the geometric and kinematic evolution and the organization of the sedimentary bodies, is discussed here, as well as with respect to important faults transversal to the Basin. A basin evolution model is proposed consisting of four rifting episodes which show: i) periods of symmetrical (horst and graben organization) and asymmetrical (half graben organization) geometric evolution; ii) diachronous fracturing; iii) rotation of the main extensional direction; iv) rooting in the variscan basement of the main faults of the basin (predominantly thick skinned style). The analysis and regional comparison, particularly with the Algarve Basin, of the time intervals represented by important basin scale hiatuses near to the renovation of the rifting episodes, have led to assume the occurrence of early tectonic inversions (Callovian–Oxfordian and Tithonian–Berriasian). The latter, however, had a subsequent evolution distinct from the first: there is no subsidence renovation, which is discussed here, and it is related to a magmatic event. Although the Lusitanian Basin is located on a rift margin which is considered non-volcanic, the three magmatic cycles as defined by many authors, particularly the second (approx. 130 to 110 My ?), performed a fundamental part in the mobilization of the Hettangian evaporites, resulting in the main diapiric events of the Lusitanian Basin. The manner and time in which the basin definitely ends its evolution (Early Aptian) is discussed here. Comparisons are established with other west Iberian margin basins and with Newfoundland basins. A model of oceanization of this area of the North Atlantic is also presented, consisting of two events separated by approximately 10 My, and of distinct areas separated by the Nazaré fault. The elaboration of this synthesis was based on: - information contained in previously published papers (1990 – 2000); - field-work carried out over the last years, the results of which have not yet been published; - information gathered from the reinterpretation of geological mapping and geophysical (seismic and well logs) elements, and from generic literature concerning the Mesozoic of the west iberian margin.
Resumo:
A Bacia Lusitaniana é uma bacia sedimentar que se desenvolveu na Margem Ocidental Ibérica (MOI) durante parte do Mesozóico, e a sua dinâmica enquadra-se no contexto da fragmentação da Pangeia, mais especificamente da abertura do Atlântico Norte. Caracteriza-se como uma bacia distensiva, pertencente a uma margem continental do tipo atlântico de rift não vulcânica. Ocupa mais de 20 000 km2 na parte central da MOI, alongando-se por cerca de 200 km segundo direcção aproximada NNW-SSE e por mais de 100 km na direcção perpendicular; cerca de 2/3 aflora na área continental emersa e a restante área, encontra-se imersa, na plataforma continental. Trata-se da única bacia das margens do Atlântico Norte com extensa exposição superficial, pelo que tem atraído nas últimas décadas um número considerável de geólogos, especialistas de variados domínios, para a realização de trabalhos de investigação integrados em equipas nacionais e internacionais, muitos delas ligadas à indústria do petróleo. Ao longo das várias décadas de prospecção foram efectuadas cerca de 50 sondagens profundas e mais de 37 000 km de perfis sísmicos de reflexão 2D. A evolução tectónica da Bacia Lusitaniana foi condicionada por falhas que se formaram durante o episódio de gracturação tardi-varisca aproximadamente entre os 300 e os 280 M.a. Este episódio tardi-orogénico resulta de imposição de regime de cisalhamento direito à micro-placa ibérica nos seus paleolimites E-W setentrional e meridional, dos quais resultariam as falhas de desligamento esquerdo de direcção aproximada NNE-SSW a NE-SW. Outras falhas orogénicas variscas de orientação N-S (falha de Porto-Tomar) e NW-SE foram também importantes na estruturação da Bacia Lusitaniana, como adiante ficará patente. Esta é a herança tectónica da Bacia que levou, durante o estiramento crostal mesozóico, à formação do conjunto de bacias marginais na MOI. A evolução tectónica da Bacia Lusitaniana está condicionada pela distensão mesozóica relacionada com a abertura do Atlântico Norte, na proximidade do Atlântico Central, domínios oceânicos distintos separados pela Zona de Falha de Açores-Gibraltar (ZFAG). Esta constitui limite transformante entre placas, que numa fase inicial do ciclo alpino, ou seja da rotura da Pangea, separou dois grandes continentes, a Laurásia a Norte e a Gondwana a Sul. A Ibéria localiza-se, assim, durante o Mesozóico, numa posição de charneira, cuja actividade está também relacionada com a evolução dos limites de placa: i) a sul, entre África e a Eurásia, limite transcorrente ao longo da Zona de Falha de Açores Gibraltar e ii) a Oeste, entre a Ibéria e a Terra Nova limite divergente associado à evolução do Atlântico. Nas fases iniciais de desenvolvimento do proto-Atlântico norte, desde o Triásico, a Ibéria encontra-se solidária ao continente norte-americano, mas por estiramento litosférico progressivo, acabará por ocorrer rotura crostal e consequente oceanização no final do Cretácico Inf. Este conjunto de interações será assim responsável por uma evolução também complexa da Margem Ocidental da Ibéria, onde se encontra a Bacia Lusitaniana, bacia intracratónica, interna, separada de uma zona externa por um relevo estrutural, o horst da Berlenga. Desta forma, alguns processos complexos, uns exógenos, outros de clara influência endógena, vão ficando registados na Bacia. Referimo-nos a episódios de inversão tectónica precoce, a um magmatismo muito ténue - para todos os efeitos podendo-se considerar como uma margem continental de rift, não vulcânica - e a diapirismo que se encontra registado na sua área geográfica.
Resumo:
The structural and sedimentary evolution of the portuguese continental margin South of Setúbal Canyon is outlined from the study of many seismic reflection profiles and rocks samples. During Triassic and Early Liassic time, a distension affects the Algarve margin that belongs to the Mesogean area. Off Baixo Alentejo rifting phases at Late Jurassic and Early Cretaceous times induced opening or widening of the adjacent part of the Atlantic ocean. Alpine orogeny is inferred to explain the Eocene and Miocene deformation of the margin specially along the main NE-SW fractures.
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.
Resumo:
Cretaceous Research 30 (2009) 575–586
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.