2 resultados para Microblogging
Resumo:
Microblogging in the workplace as a functionality of Enterprise Social Networking (ESN) platforms is a relatively new phenomenon of which the use in knowledge work has not yet received much attention from research. In this cross-sectional study, I attempt to shed light on the role of microblogging in knowledge work. I identify microblogging use practices of knowledge workers on ESN platforms, and I identify its role in supporting knowledge work performance. A questionnaire is carried out among a non-representative sample of knowledge workers. The results shed light on the purposes of the microblogging messages that knowledge workers write. It also helps us find out whether microblogging supports them in performing their work. The survey is based on existing theory that supplied me with possible microblog purposes as well as theory on what the actions of knowledge workers are. The results reveal that “knowledge & news sharing”, “crowd sourcing”, “socializing & networking” and “discussion & opinion” are frequent microblog purposes. The study furthermore shows that microblogging benefits knowledge workers’ work. Microblogging seems to be a worthy addition to the existing means of communication in the workplace, and is especially useful to let knowledge, news and social contact reach a further and broader audience than it would in a situation without this social networking service.
Resumo:
O crescimento e a expansão das redes sociais trouxe novas formas de interação entre os seres humanos que se repercutem na vida real. Os textos partilhados nas redes sociais e as interações resultantes de todas as atividades virtuais têm vindo a ganhar um grande impacto no quotidiano da sociedade e no âmbito económico e financeiro, as redes sociais tem sido alvo de diversos estudos, particularmente em termos de previsão e descrição do mercado acionista (Zhang, Fuehres, & Gloor, 2011) (Bollen, Mao & Zheng, 2010). Nesta investigação percebemos se o sentimento do Twitter, rede social de microblogging, se relaciona diretamente com o mercado acionista, querendo assim compreender qual o impacto das redes sociais no mercado financeiro. Tentámos assim relacionar duas dimensões, social e financeira, de forma a conseguirmos compreender de que forma poderemos utilizar os valores de uma para prever a outra. É um tópico especialmente interessante para empresas e investidores na medida em que se tenta compreender se o que se diz de determinada empresa no Twitter pode ter relação com o valor de mercado dessa empresa. Usámos duas técnicas de análise de sentimentos, uma de comparação léxica de palavras e outra de machine learning para compreender qual das duas tinha uma melhor precisão na classificação dos tweets em três atributos, positivo, negativo ou neutro. O modelo de machine learning foi o modelo escolhido e relacionámos esses dados com os dados do mercado acionista através de um teste de causalidade de Granger. Descobrimos que para certas empresas existe uma relação entre as duas variáveis, sentimento do Twitter e alteração da posição da ação entre dois períodos de tempo no mercado acionista, esta última variável estando dependente da dimensão temporal em que agrupamos o nosso sentimento do Twitter. Este estudo pretendeu assim dar seguimento ao trabalho desenvolvido por Bollen, Mao e Zheng (2010) que descobriram que uma dimensão de sentimento (calma) consegue ser usada para prever a direção das ações do mercado acionista, apesar de terem rejeitado que o sentimento geral (positivo, negativo ou neutro) não se relacionava de modo global com o mercado acionista. No seu trabalho compararam o sentimento de todos os tweets de um determinado período sem exclusão com o índice geral de ações no mercado enquanto a metodologia adotada nesta investigação foi realizada por empresa e apenas nos interessaram tweets que se relacionavam com aquela empresa em específico. Com esta diferença obtemos resultados diferentes e certas empresas demonstravam que existia relação entre várias combinações, principalmente para empresas tecnológicas. Testamos o agrupamento do sentimento do Twitter em 3 minutos, 1 hora e 1 dia, sendo que certas empresas só demonstravam relação quando aumentávamos a nossa dimensão temporal. Isto leva-nos a querer que o sentimento geral da empresa, e se a mesma for uma empresa tecnológica, está ligado ao mercado acionista estando condicionada esta relação à dimensão temporal que possamos estar a analisar.