11 resultados para Microalgae. Biofuel. Photobioreactor. Transesterification
Resumo:
Dissertation presented at Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa to obtain the degree of Master in Chemical and Biochemical Engineering
Resumo:
The main objective of this work is the valorization of residues from agro-industry giving them an added value. The valorization was performed by using a "green" and sustainable solvent - supercritical fluid, in this case carbon dioxide. Two residues and one biomass were used to produce two different final products, thereby emphasizing the versatility of the waste recovery - spent coffee grounds and microalgae Chlorella protothecoides to produce biodiesel, and tomato pomace to extract carotenoids. In the first part of this work it was demonstrated the possibility to obtain a conversion of coffee spent grounds oil into biodiesel, through an enzymatic transesterification reaction, of 98.01% with the following operating conditions: molar ratio oil:methanol 1:24, residence time 0.8 min, pressure 25 MPa, temperature 313,15K. In this first phase, it was also used the microalgae Chlorella protothecoides, a biomass, to produce biodiesel and favorable results were obtained with this green process compared with a traditional process - basic catalysis / acid. In the second part of this work, by an extraction with supercritical CO2 it was obtained 3.38% oil from tomato pomace under the following conditions: pressure 35.1 MPa, temperature 313,15K. It was found that this oil contains various carotenoids: β-carotene, lutein and lycopene. The latter is present in larger amount.
Resumo:
Science of the total environment 405(2008) 278-285
Resumo:
International Biodeterioration & Biodegradation 64(2010)388 e 396
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Bioenergia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Partes do presente trabalho foram submetidas para publicação: Subcapítulo 5.1 Graça, S., Sousa, C., Ambrosano, L., Hall, L., Oliveira, A.C., Ribeiro, B., Gouveia, L. (2014); Production of valuable microalgal biomass by treating Urban Wastewater. Submetido Algal Research (Ref. No.: ALGAL-D-14-00148) Subcapítulo 5.7 Batista, A.P., Ambrosano, L., Graça, S., Sousa, C., Marques, P., Ribeiro, B., Botrel, E., Neto, P. e Gouveia, L. (2014); Combining urban wastewater with biohydrogen production - an integrated microalgae-based approach; Bioresource Technology (Ref. No.: BITE-D-14-04819)
Resumo:
Carbon dioxide valorization, will not only help to relieve the greenhouse effect but might also allow us to transform it in value-added chemicals that will help overcoming the energy crisis. To accomplish this goal, more research that focus on sequestering CO2 and endeavors through a carbon-neutral or carbon-negative strategy is needed in order to handle with the dwindling fossil fuel supplies and their environmental impact. Formate dehydrogenases are a promising means of turning CO2 into a biofuel that will allow for a reduction of greenhouse gas emissions and for a significant change to the economic paramount. The main objective of this work was to assess whether a NAD+-independent molybdenum-containing formate dehydrogenase is able to catalyze the reduction of CO2 to formate. To achieve this, a molybdenum-containing formate dehydrogenase was isolated from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774. Growth conditions were found that allowed for a greater cellular mass recovery and formate dehydrogenase expression. After growth trials, kinetic assays for formate oxidation and CO2 reduction were performed and kinetic parameters determined. For the formate oxidation reaction, a KM of 49 μM and a turnover constant of 146 s-1 were determined. These kinetic parameters are in agreement with those determined by Mota, et al. (2011). Finally, we found that this molybdenum-containing enzyme was able to catalyze the reduction of CO2 to formate with a turnover constant of 4.6 s-1 and a KM of 13 μM. For the first time a NAD+-independent molybdenum-containing formate dehydrogenase was found to catalyze CO2 reduction, allowing its use as a biocatalyst in energetically efficient CO2 fixation processes that can be directed towards bioremediation or as an alternative and renewable energy source. Characterizing these enzymes may lead to the development of more efficient synthetic catalysts, make them readily available and more suited for practical applications.
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.